The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ...Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes.展开更多
Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ho...Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) are obtained at 20 min.展开更多
Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could ...Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.展开更多
Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which t...Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 ℃.展开更多
The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanic...The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).展开更多
The influences of Sr on the microstructure,texture and mechanical properties including flow and anisotropy behavior of AZ31 alloys are investigated.Slabs containing no,0.4 and 0.8 wt%of strontium were cast and subject...The influences of Sr on the microstructure,texture and mechanical properties including flow and anisotropy behavior of AZ31 alloys are investigated.Slabs containing no,0.4 and 0.8 wt%of strontium were cast and subjected to hot rolling.Results indicate that Sr reduces the basal texture intensity(23%in the AZ31+0.8Sr alloy)and homogenizes the distribution of strain in uniaxial tension.Furthermore,Sr increases both the strength coefficient and the strain hardening exponent in all directions.In the transverse direction,enhancements are more significant.Moreover,Sr enhances the combination of tensile strength and total elongation;i.e.,toughness,whether tests are performed parallel to the rolling,diagonal or transverse directions,to significant extents.展开更多
Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0....Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.展开更多
The effect of austempering on the mechanical properties of the hot rolled Si- Mn TRIP steels was studied. The mechanism of transformation induced plasticity (TRIP) was discussed through the examination of the micros...The effect of austempering on the mechanical properties of the hot rolled Si- Mn TRIP steels was studied. The mechanism of transformation induced plasticity (TRIP) was discussed through the examination of the microstructure and the mechanical properties of the specimens. The results stow that the microstructures of the steels were comprised of polygonal ferrite, granular bainite and a significant amount of stable retained austenite. The specimen exhibits excellent mechanical properties for the TRIP effect. Isothermal holding time for austempering affects the stability of retained austenite. The mechanical properties such as tensile strength, total elongation and strength ductility balance reach their optimal values ( 776 MPa , 33% and 25608 MPa% , respectively) when the specimen is held at 400℃ for 25 min.展开更多
Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total p...Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total pro- duction cost and a decrease of production efficiency. The main purpose of this paper is to develop an intelligent pro- gram based on artificial neural network (ANN) to predict the mechanical properties of a commercial grade hot rolled low carbon steel strip, SPHC. A neural network model was developed by using 7 x 5 x 1 back-propagation (BP) neural network structure to determine the multiple relationships among chemical composition, product pro- cess and mechanical properties. Industrial on-line application of the model indicated that prediction results were in good agreement with measured values. It showed that 99.2 % of the products' tensile strength was accurately pre- dicted within an error margin of ~ 10 %, compared to measured values. Based on the model, the effects of chemical composition and hot rolling process on mechanical properties were derived and the relative importance of each in- put parameter was evaluated by sensitivity analysis. All the results demonstrate that the developed ANN models are capable of accurate predictions under real-time industrial conditions. The developed model can be used to sub- stitute mechanical property measurement and therefore reduce cost of production. It can also be used to control and optimize mechanical properties of the investigated steel.展开更多
Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering in the salt bath after hot rolling was investigated. The effect of isothermal holding time on mechanic...Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering in the salt bath after hot rolling was investigated. The effect of isothermal holding time on mechanical properties was studied through examining of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and a significant amount of stable retained austenite. Strain-induced transformation to martensite of retained austenite and TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holding led to cementite precipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%, and 25608 MPa.%, respectively.展开更多
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu...Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.展开更多
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati...A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.展开更多
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc...With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated.展开更多
Ultra-fast cooling (UFC) is an advanced technology in hot rolling field. Through this technology, great changes on the run-out table are produced in the strip cooling process. In order to adapt to these changes, a n...Ultra-fast cooling (UFC) is an advanced technology in hot rolling field. Through this technology, great changes on the run-out table are produced in the strip cooling process. In order to adapt to these changes, a new gen-eration of hot strip cooling control system after rolling was developed based on the UFC basic principle. The system can not only accomplish temperature of UFC delivery side, coiling temperature, cooling rate, etc, and multi-objective accuracy control, but also offer more flexibility and new attractive possibilities in terms of cooling pattern on the run-out table, which could be of prime importance for the production of some difficult steels. In addition, through the time-velocity-distance (TVD) profile prediction combined with speed feed-forward control and coiling temperature feedback control, the coiling temperature control precision can be effectively improved during accelerative rolling in the system. At present, the system has been successfully used in the conventional strip production line and CSP short process production line, and its application effect is perfect.展开更多
A three-step cooling pattern on the runout table(ROT)was conducted for the hot rolled TRIP steel.Microstructural evolution during thermomechanical controlled processing(TMCP)was investigated.Processing condition o...A three-step cooling pattern on the runout table(ROT)was conducted for the hot rolled TRIP steel.Microstructural evolution during thermomechanical controlled processing(TMCP)was investigated.Processing condition of controlled cooling on a ROT in the laboratory rolling mill was discussed.The results indicated that the microstructure containing polygonal ferrite,granular bainite and a significant amount of the stable retained austenite can be obtained through three-step cooling on the ROT after hot rolling.TMCP led to ferrite grain refinement.Controlled cooling after hot rolling resulted in the stability of the remaining austenite and a satisfactory TRIP effect.Excellent mechanical properties were obtained through TMCP for the hot rolled TRIP steel.展开更多
A high strength steel with yield strength on the order of 600 MPa was developed successfully with only addition of titanium alloying element based on a low-carbon steel. The results showed that the hot deformation acc...A high strength steel with yield strength on the order of 600 MPa was developed successfully with only addition of titanium alloying element based on a low-carbon steel. The results showed that the hot deformation accelerated ferrite and pearlite transformation and retarded bainite transformation under continuous cooling condition. The microstructure of this steel was mainly composed of fine grained ferrite and carbides distributing along the ferrite grain boundaries. The yield and tensile strengths of steels were about 620--650 MPa and 720--740 MPa, respectively, and the values of strain hardening exponent and plastic strain ratio were 0.12 and 0.80, respectively, thereby providing a good combination of strength with toughness. In short, the fine grained ferrite and TiC precipitation strengthening contributed to a high strength.展开更多
The effect of thermomechanical processing(TMP)on the mechanical properties of hot rolled multiphase steel was investigated.TMP was conducted using a laboratory hot rolling mill,in which three different kinds of fini...The effect of thermomechanical processing(TMP)on the mechanical properties of hot rolled multiphase steel was investigated.TMP was conducted using a laboratory hot rolling mill,in which three different kinds of finish rolling deformation degrees and temperatures were applied.The results indicate that polygonal ferrite,granular bainite,and a considerable amount of stabilized retained austenite can be obtained by TMP.The stability of the retained austenite increases with decreasing finish rolling temperature and increasing finish rolling deformation degrees.Ultimate tensile strength(σb),total elongation(δ),and the product of ultimate tensile strength by total elongation(σb·δ)for 50% reduction at finish rolling temperature of 700 ℃ reach maximum values [791 MPa,36% and 28 476(MPa·%),respectively].展开更多
Tension-tension fatigue properties of hot rolled and cold rolled strips with same contents and sizes were measured by using group test method at room temperature in air. The results showed that the fatigue properties ...Tension-tension fatigue properties of hot rolled and cold rolled strips with same contents and sizes were measured by using group test method at room temperature in air. The results showed that the fatigue properties of the hot rolled strips were obviously higher than those of the cold rolled strips. The hot rolled strips with similar or higher tensile strength exhibited superior fatigue property over the cold rolled strips. Fracture morphologies observed using scanning electronic microscope (SEM) showed that the hot rolled strips exhibited larger fracture areas, indicating a slightly lower plasticity, and more even fracture microstructure and stable properties. It is feasible and reliable to replace cold rolled strips with hot rolled strips.展开更多
The effects of technological parameters on microstructures and properties of low cost hot rolled dual-phase steel was researched by design different finish rolling temperature,mid cooling temperature between laminar c...The effects of technological parameters on microstructures and properties of low cost hot rolled dual-phase steel was researched by design different finish rolling temperature,mid cooling temperature between laminar cooling and UFC (ultra fast cooling) and stable UFC rate on the same gauge strips with the same chemistry composition during the manufacture process.It is the key for controlling coil temperature to control finish rolling temperature and mid cooling temperature between laminar cooling and UFC that based on stable UFC rate precondition.The lower finish rolling temperature,with mid cooling temperature between laminar cooling and UFC,the better to form martensite is.The foundation of developing the similar productions on the similar product line was supplied.It is good to technological advancement of developing high affixation value production as hot rolled DP steel,TRIP steel etc.in CSP line.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
基金This work was supported by the National Natural Science Foundation of China(No.50334010)The author(Zhuang LI)also acknowledges the support of the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302).
文摘Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes.
基金Project (No. 50334010) supported by the National Natural ScienceFoundation of China
文摘Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) are obtained at 20 min.
基金supported by the National Natural Science Foundation of China(No.50334010)the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302).
文摘Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.
基金the National Natural Science Foundation of China(No.50334010)the Program of Education Branch of Liaoning Province of China(No.2006B075)
文摘Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 ℃.
基金Item Sponsored by National Natural Science Foundation of China (50334010)
文摘The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).
基金A.Sadeghi and H.Mortezapour acknowledge the support of the Iran National Science Foundation(INS F)Grant number 95832506.
文摘The influences of Sr on the microstructure,texture and mechanical properties including flow and anisotropy behavior of AZ31 alloys are investigated.Slabs containing no,0.4 and 0.8 wt%of strontium were cast and subjected to hot rolling.Results indicate that Sr reduces the basal texture intensity(23%in the AZ31+0.8Sr alloy)and homogenizes the distribution of strain in uniaxial tension.Furthermore,Sr increases both the strength coefficient and the strain hardening exponent in all directions.In the transverse direction,enhancements are more significant.Moreover,Sr enhances the combination of tensile strength and total elongation;i.e.,toughness,whether tests are performed parallel to the rolling,diagonal or transverse directions,to significant extents.
基金Funded by the National Natural Science Foundation of China(NSFC)(No.51274154)
文摘Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.
基金Funded by the National Natural Science Foundation of China(No.50334010) andthe Doctor Degree Thesis SubsidizationItemofNortheastern University (No.200302)
文摘The effect of austempering on the mechanical properties of the hot rolled Si- Mn TRIP steels was studied. The mechanism of transformation induced plasticity (TRIP) was discussed through the examination of the microstructure and the mechanical properties of the specimens. The results stow that the microstructures of the steels were comprised of polygonal ferrite, granular bainite and a significant amount of stable retained austenite. The specimen exhibits excellent mechanical properties for the TRIP effect. Isothermal holding time for austempering affects the stability of retained austenite. The mechanical properties such as tensile strength, total elongation and strength ductility balance reach their optimal values ( 776 MPa , 33% and 25608 MPa% , respectively) when the specimen is held at 400℃ for 25 min.
文摘Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total pro- duction cost and a decrease of production efficiency. The main purpose of this paper is to develop an intelligent pro- gram based on artificial neural network (ANN) to predict the mechanical properties of a commercial grade hot rolled low carbon steel strip, SPHC. A neural network model was developed by using 7 x 5 x 1 back-propagation (BP) neural network structure to determine the multiple relationships among chemical composition, product pro- cess and mechanical properties. Industrial on-line application of the model indicated that prediction results were in good agreement with measured values. It showed that 99.2 % of the products' tensile strength was accurately pre- dicted within an error margin of ~ 10 %, compared to measured values. Based on the model, the effects of chemical composition and hot rolling process on mechanical properties were derived and the relative importance of each in- put parameter was evaluated by sensitivity analysis. All the results demonstrate that the developed ANN models are capable of accurate predictions under real-time industrial conditions. The developed model can be used to sub- stitute mechanical property measurement and therefore reduce cost of production. It can also be used to control and optimize mechanical properties of the investigated steel.
基金This work was financially supported by the National Natural Science Foundation of China (No.50334010).
文摘Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering in the salt bath after hot rolling was investigated. The effect of isothermal holding time on mechanical properties was studied through examining of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and a significant amount of stable retained austenite. Strain-induced transformation to martensite of retained austenite and TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holding led to cementite precipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%, and 25608 MPa.%, respectively.
基金supported by the National Natural Science Foundation of China(No.52274359)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110406)+3 种基金Beijing Natural Science Foundation,China(No.2212035)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-19005C1Z and 00007718)the Aeroengine Group University Research Cooperation Project,China(No.HFZL2021CXY021)the State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14).
文摘Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.
基金supported by the National Natural Science Foundation of China(grant no.52192603,52275308).
文摘A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.
文摘With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated.
基金Item Sponsored by National Natural Science and Technology Support Program in 12th Five-Year Plan of China ( 2012BAF04B01 )
文摘Ultra-fast cooling (UFC) is an advanced technology in hot rolling field. Through this technology, great changes on the run-out table are produced in the strip cooling process. In order to adapt to these changes, a new gen-eration of hot strip cooling control system after rolling was developed based on the UFC basic principle. The system can not only accomplish temperature of UFC delivery side, coiling temperature, cooling rate, etc, and multi-objective accuracy control, but also offer more flexibility and new attractive possibilities in terms of cooling pattern on the run-out table, which could be of prime importance for the production of some difficult steels. In addition, through the time-velocity-distance (TVD) profile prediction combined with speed feed-forward control and coiling temperature feedback control, the coiling temperature control precision can be effectively improved during accelerative rolling in the system. At present, the system has been successfully used in the conventional strip production line and CSP short process production line, and its application effect is perfect.
基金Item Sponsored by National Natural Science Foundation of China(50334010)
文摘A three-step cooling pattern on the runout table(ROT)was conducted for the hot rolled TRIP steel.Microstructural evolution during thermomechanical controlled processing(TMCP)was investigated.Processing condition of controlled cooling on a ROT in the laboratory rolling mill was discussed.The results indicated that the microstructure containing polygonal ferrite,granular bainite and a significant amount of the stable retained austenite can be obtained through three-step cooling on the ROT after hot rolling.TMCP led to ferrite grain refinement.Controlled cooling after hot rolling resulted in the stability of the remaining austenite and a satisfactory TRIP effect.Excellent mechanical properties were obtained through TMCP for the hot rolled TRIP steel.
基金Item Sponsored by High Technology Development Program of China(2003AA33G010)Central Collegiate Basic Scientific Bursary of China(N090307001)
文摘A high strength steel with yield strength on the order of 600 MPa was developed successfully with only addition of titanium alloying element based on a low-carbon steel. The results showed that the hot deformation accelerated ferrite and pearlite transformation and retarded bainite transformation under continuous cooling condition. The microstructure of this steel was mainly composed of fine grained ferrite and carbides distributing along the ferrite grain boundaries. The yield and tensile strengths of steels were about 620--650 MPa and 720--740 MPa, respectively, and the values of strain hardening exponent and plastic strain ratio were 0.12 and 0.80, respectively, thereby providing a good combination of strength with toughness. In short, the fine grained ferrite and TiC precipitation strengthening contributed to a high strength.
基金Item Sponsored by National Natural Science Foundation of China(50334010)
文摘The effect of thermomechanical processing(TMP)on the mechanical properties of hot rolled multiphase steel was investigated.TMP was conducted using a laboratory hot rolling mill,in which three different kinds of finish rolling deformation degrees and temperatures were applied.The results indicate that polygonal ferrite,granular bainite,and a considerable amount of stabilized retained austenite can be obtained by TMP.The stability of the retained austenite increases with decreasing finish rolling temperature and increasing finish rolling deformation degrees.Ultimate tensile strength(σb),total elongation(δ),and the product of ultimate tensile strength by total elongation(σb·δ)for 50% reduction at finish rolling temperature of 700 ℃ reach maximum values [791 MPa,36% and 28 476(MPa·%),respectively].
基金Item Sponsored by National Natural Science Foundation of China(51074210)
文摘Tension-tension fatigue properties of hot rolled and cold rolled strips with same contents and sizes were measured by using group test method at room temperature in air. The results showed that the fatigue properties of the hot rolled strips were obviously higher than those of the cold rolled strips. The hot rolled strips with similar or higher tensile strength exhibited superior fatigue property over the cold rolled strips. Fracture morphologies observed using scanning electronic microscope (SEM) showed that the hot rolled strips exhibited larger fracture areas, indicating a slightly lower plasticity, and more even fracture microstructure and stable properties. It is feasible and reliable to replace cold rolled strips with hot rolled strips.
文摘The effects of technological parameters on microstructures and properties of low cost hot rolled dual-phase steel was researched by design different finish rolling temperature,mid cooling temperature between laminar cooling and UFC (ultra fast cooling) and stable UFC rate on the same gauge strips with the same chemistry composition during the manufacture process.It is the key for controlling coil temperature to control finish rolling temperature and mid cooling temperature between laminar cooling and UFC that based on stable UFC rate precondition.The lower finish rolling temperature,with mid cooling temperature between laminar cooling and UFC,the better to form martensite is.The foundation of developing the similar productions on the similar product line was supplied.It is good to technological advancement of developing high affixation value production as hot rolled DP steel,TRIP steel etc.in CSP line.