Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the de...Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the development of transborder watershed.In this study,we used global historical land cover data,the hemeroby index model,and synthesized major historical events to analyze how human activity intensity changed in the Heilongjiang River(Amur River in Russia)watershed(HLRW).The results showed that there was a strong spatial heterogeneity in the variation of human activity intensity in the HLRW over the past century(1900-2016).On the Chinese side,the human activity intensity change shifted from the plain areas for agricultural reclamation to the mountainous areas for timber extraction.On the Russian side,human activity intensity changes mostly concentrated along the Trans-Siberian Railway and the Baikal-Amur Mainline.Localized variation of human activity intensity tended to respond to regional events while regionalized variation tends to reflect national policy change or broad international events.The similarities and differences between China and Russia in policies and positions in international events resulted in synchronous and asynchronous changes in human activity intensity.Meanwhile,policy shifts were often confined by the natural features of the watershed.These results reveal the historical origins and fundamental connotations of watershed development and contribute to formulating regional management policies that coordinate population,eco-nomic,social,and environmental activities.展开更多
[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to p...[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to process TM/ETM+ image based on field work and investigation of Hotan Oasis. These interpretation dates have been reclassified to desert and oasis. Then, the driving mechanism of desertification and oasification was analyzed. [Result] The analysis indicated that the oasification velocity(91.24 km^2/year) was faster than the desertification’s(77.78 km^2/year),with a rapid growth of 5.59 km^2/year in oasis area in the mid-lower reaches of the Hotan River. [Coclusion] There existed spatial coupling linked by water consumption between oasification in the middle reaches and desertification in the lower reaches.And the changing trends were opposite not only for the oasis area, but also for the oasification area and oasification velocity between the middle and the lower reaches of the Hotan River Basin. With climatic warming, population growth, economical development, scientific and technological progress, and in particular the implementation of national policies, the cropland area increased and oasis expanded, speeding up the oasification and water consumption in the middle reaches. Hence it is urgent to prevent the Hotan Oasis from exacerbating the current water supply-demand imbalance and prohibit the expansion of arable land to transitional belt between oasis and desert.展开更多
Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the b...Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the biological geomorphologic features and growth process of Tamarix nabkhas in the middle and lower reaches of the Hotan River, Xinjiang. And the results indicate that the ecological type of Tamarix in the study area is a kind of Tugaic soil habitat based on the deep soil of the Populus Diversifolia forests and shrubs. This type of habitat can be divided into three kinds of sub-habitats which demonstrate the features of ecological environment of Tamarix nabkhas during the differential developed phases. Meanwhile, the Tamar, ix nabkha can exert intensified disturbance current on wind-sand flow on the ground,and its root and stems not only have strong potential of sprouting but are characteristic of wind erosion-tolerance, resistance to be buried by sand and respectively tough rigid of the lignified branches, for it has a rather longer life-time. Thus, the wind speed profile influenced by the Tamarix nabkha is different from the Phragmites nabkha and Alhagi nabkha. And the structure of the wind flow is beneficial to aeolian sand accumulating in/around Tamarix shrub, which can create unique Tamarix nabkhas with higher average gradient and longer periodicity of life. Tamarix nabkha evolution in the area experienced three stages: growth stage, mature and steady stage and withering stage. In each stage, morphological features and geomorphic process of Tamarix nabkha are different due to the discrep- ant interaction between the nabkha and aeolian sand flow.展开更多
Runoff formation is a complex meteorological-hydrological process impacted by many factors,especially in the inland river basin.Based on the data of daily mean air temperature,precipitation and runoff during the perio...Runoff formation is a complex meteorological-hydrological process impacted by many factors,especially in the inland river basin.Based on the data of daily mean air temperature,precipitation and runoff during the period of 1958-2007 in the Kaidu River watershed,this paper analyzed the changes in air temperature,precipitation and runoff and revealed the direct and indirect impacts of daily air temperature and precipitation on daily runoff by path analysis.The results showed that mean temperature time series of the annual,summer and autumn had a significant fluctuant increase during the last 50 years(P 0.05).Only winter precipitation increased significantly(P 0.05) with a rate of 1.337 mm/10a.The annual and winter runoff depthes in the last 50 years significantly increased with the rates of 7.11 mm/10a and 1.85 mm/10a,respectively.The driving function of both daily temperature and precipitation on daily runoff in annual and seasonal levels is significant in the Kaidu River watershed by correlation analysis.The result of path analysis showed that the positive effect of daily air temperature on daily runoff depth is much higher than that of daily precipitation in annual,spring,autumn and winter,however,the trend is opposite in summer.展开更多
In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hyd...In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.展开更多
With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas ...With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.展开更多
Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape infl...Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape influences hydrological components will greatly improve the predictability of hydrological responses to mountain landscape changes and thus can help the government make sounder decisions. In the paper, we used the VIC (Variable Infiltration Capacity) model to conduct hydrological modeling in the upper Heihe River watershed, along with a frozen-soil module and a glacier melting module to improve the simulation. The improved model performed satisfactorily. We concluded that there are differences in the runoff generation of mountain landscape both in space and time. About 50% of the total runoff at the catchment outlet were generated in mid-mountain zone (2,900-4,000 m asl), and water was mainly consumed in low mountain region (1,700-2,900 m asl) because of the higher requirements of trees and grasses. The runoff coefficient was 0.37 in the upper Heihe River watershed. Barren landscape produced the largest runoff yields (52.46% of the total runoff) in the upper Heihe River watershed, fol- lowed by grassland (34.15%), shrub (9.02%), glacier (3.57%), and forest (0.49%). In order to simulate the impact of landscape change on hydrological components, three landscape change scenarios were designed in the study. Scenario 1, 2 and 3 were to convert all shady slope landscapes at 2,000-3,300 m, 2,000-3,700 m, and 2,000-4,000 m asl respectively to forest lands, with forest coverage rate increased to 12.4%, 28.5% and 42.0%, respectively. The runoff at the catchment outlet correspondingly declined by 3.5%, 13.1% and 24.2% under the three scenarios. The forest landscape is very important in water conservation as it reduced the flood peak and increased the base flow. The mountains as "water towers" play important roles in water resources generation and the impact of mountain landscapes on hydrology is significant.展开更多
This paper firstly investigated the land-use and land-cover change (LUCC) in the Hun-Taizi River water- shed, Northeast China from 1988 to 2004 based on remotely sensed images and geographic information systems (GI...This paper firstly investigated the land-use and land-cover change (LUCC) in the Hun-Taizi River water- shed, Northeast China from 1988 to 2004 based on remotely sensed images and geographic information systems (GIS) technology. Then, using the famous land-use change model of Conversion of Land Use and its Effects at Small re- gional extent (CLUE-S), this paper simulated the land use changes under historical trend (HT), urban planning (UP) and ecological protection (EP) scenarios considering urban planning and ecological protection over the next 20 years. The simulated results under UP scenario in 2020 were compared with the planning map to assess the feasibility of us- ing land-use change model to guide regional planning. Results show that forest land, dry farmland, paddy, and shrub land were the main land-use categories. Paddy and dry farmland being converted to urban area and rural settlement characterized the land-use change from 1988 to 2004. The main land-use categories changed over time. Landscape-pattem fragmentation will be worse under HT and UP scenarios, but better in EP scenario. The comparing results of simulated map with planning map in 2020 show that land-use change model is powerful tool to guide regional planning. Land-use scenarios can support regional planning and policy-making through analyzing future consequences scientifically.展开更多
In this paper,the performance of the classic snowmelt runoff model(SRM)is evaluated in a daily discharge simulation with two different melt models,the empirical temperature-index melt model and the energy-based radiat...In this paper,the performance of the classic snowmelt runoff model(SRM)is evaluated in a daily discharge simulation with two different melt models,the empirical temperature-index melt model and the energy-based radiation melt model,through a case study from the data-sparse mountainous watershed of the Urumqi River basin in Xinjiang Uyghur Autonomous Region of China.The classic SRM,which uses the empirical temperature-index method,and a radiation-based SRM,incorporating shortwave solar radiation and snow albedo,were developed to simulate daily runoff for the spring and summer snowmelt seasons from 2005 to 2012,respectively.Daily meteorological and hydrological data were collected from three stations located in the watershed.Snow cover area(SCA)was extracted from satellite images.Solar radiation inputs were estimated based on a digital elevation model(DEM).The results showed that the overall accuracy of the classic SRM and radiation-based SRM for simulating snowmeltdischarge was relatively high.The classic SRM outperformed the radiation-based SRM due to the robust performance of the temperature-index model in the watershed snowmelt computation.No significant improvement was achieved by employing solar radiation and snow albedo in the snowmelt runoff simulation due to the inclusion of solar radiation as a temperature-dependent energy source and the local pattern of snowmelt behavior throughout the melting season.Our results suggest that the classic SRM simulates daily runoff with favorable accuracy and that the performance of the radiation-based SRM needs to be further improved by more ground-measured data for snowmelt energy input.展开更多
The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A ...The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.展开更多
Under the guide of system theory, taking the oasis in the Sangong River watershed as a case study, this paper analyzes the oasis structure and function from 4 aspects including oasis spatial structure, water resources...Under the guide of system theory, taking the oasis in the Sangong River watershed as a case study, this paper analyzes the oasis structure and function from 4 aspects including oasis spatial structure, water resources structure, vegetation structure, economic structure and their corresponding functions. The results indicate that as a typical small-scale watershed, Sangong River watershed has the relatively complete mountain-basin structure, and ecological and productive function. Because of human drastic activity the utilization rate of water resources was as high as 98.7%, and the utilization of groundwater was not reasonable, which resulted in an average annual decline of 0.353m in the water table of alluvial-diluvial-fan oasis, and an average annual increase of 0.047m in the alluvial-plain. The layout of crop and shelter forest benefits to the utilization of water and land resources. The development of oasis economy is at low level, and its eco-economic function is weak.展开更多
The Lancang River Watershed is one of the most biologically diverse areas in the world. The river flows through Yunnan Province, China, which suffered serious deforestation since the 1980s;this in turn led to increase...The Lancang River Watershed is one of the most biologically diverse areas in the world. The river flows through Yunnan Province, China, which suffered serious deforestation since the 1980s;this in turn led to increased soil erosion in the region. To investigate the influence of the spatial distribution of land use and slope on soil erosion in the Lancang River Watershed, the Soil and Water Assessment Tool (SWAT) model was used to establish hydrological models using two-phase land use maps (1975 and 1985), a soil map, and meteorological data from 11 gauging stations. The satisfactory values of Nash-Sutcliffe efficiency Ens and correlation coefficient R2 during the calibration and validation period indicated that SWAT can be used in this area to simulate the average annual soil erosion under different land use scenarios change. By comparing soil erosion rate under different land use scenarios change, forests and grasslands had similar effects on preventing soil erosion. A parameter, soil erosion increment (Ei), was used to assess the effects of slope on soil erosion. The results revealed that variation in sediment yield was more sensitive to land use change for slopes exceeded 25° than for slopes being 0° - 15°. The spatial distribution of land use also had a relationship to soil erosion. Compared with the soil erosion rate in each sub-watershed using two-phase land use maps, the soil erosion rate increased when the percent cover of natural vegetation decreased. The results of this study provide baseline data for soil conservation and protection of the environment and ecology of the Lancang River Watershed in Yunnan Province.展开更多
Land use change in rural China since the 1980s, induced by institution reforms, urbanization, industrialization and population increase, has received more attention. However, case studies on how institution reforms af...Land use change in rural China since the 1980s, induced by institution reforms, urbanization, industrialization and population increase, has received more attention. However, case studies on how institution reforms affect farmers' livelihood strategies and drive land use change are scarce. By means of cropland plots investigations and interviews with farmers, this study examines livelihood strategy change and land use change in Danzam Village of Jinchuan County in the upper Dadu River watershed, eastern Tibetan Plateau, China. The results show that, during the collective system period, as surplus labor forces could not be transferred to the secondary and tertiary industries, they had to choose agricultural involution as their livelihood strategy, then the farmers had to produce more grains by land reclamation, increasing multiple cropping index, improving input of labor, fertilizer, pesticide and adopting advanced agricultural techniques. During the household responsibility system period, as labors being transferred to the secondary and tertiary industries, farmers chose livelihood diversification strategy. Therefore, labor input to grain planting was greatly reduced, which drove the transformation of grain to horticulture, vegetable or wasteland and decrease of multiple cropping index. This study provides a new insight into understanding linkages among institution reforms, livelihood strategy of smallholders and land use change in rural China.展开更多
In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The c...In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF.展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
Flood events vary with sub-regions, sites and time and show complex characteristics. This study investigated temporal variabilities in flood discharges and relationships with principal driving factors in data scarce W...Flood events vary with sub-regions, sites and time and show complex characteristics. This study investigated temporal variabilities in flood discharges and relationships with principal driving factors in data scarce Wabi Shebele River Basin. The preliminary analysis using exploratory data analysis (EDA) on annual and seasonal maximum discharge reveals that there are cycles of extreme flows at five- and ten-year intervals respectively throughout the basin. The statistical verification using the Mann-Kendall test and Quantile perturbation method indicates a significant trend in flood magnitude and frequency entire the basin in the early 21st century. For longest period (1980-2010) annual maximum stream flow shows significant positive trend (p-value < 0.05) in middle catchments and negative trend (p-value < 0.05) in eastern catchments. The years: 1986-1995, 2006-2010 are the years in which positive significant anomalies occurred in all seasons, while the years: 1980-1985, 1996-2005 are the occurrence years of significant negative anomalies. Rainfall from climate drivers;DA, BE, VS and fraction of sand from environmental background drivers;fraction of forest and population density from external factors were identified as the powerful driving factors of flood variabilities in the Wabi Shebele River Basin.展开更多
The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data in...The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data includes three inputs; each of them belongs to one part of three zones of a fluvial system. The three parts of the Sefidrood River fluvial system include Zone 1,a sub-watershed as degradation modeling site,Zone 2,Sefidrood Dam as dam site,and Zone 3,17km away from the Sefidrood River path to the Caspian Sea as ending point site. The degradation model in the Zone 1 provides a suitable mean for decision support system to decrease the human impacts on each small district. The maximum number for degradation coefficient belongs to the small district with the highest physiographic density,relatively cumulative activities,and a lower figure for the habitat vulnerability. The human degradation impact were not limited to the upstream. The investigation to the Sefidrood Dam and ending point of the Sefidrood River depicts that sedimentation continues as a significant visual impact in the Sefidrood Dam reservoir and the estuary.展开更多
The study on sediment production and its relationship with climatic and hydrological factors in watershed is a major environment issue of concern in the international community. Based on the observational records cove...The study on sediment production and its relationship with climatic and hydrological factors in watershed is a major environment issue of concern in the international community. Based on the observational records covering the period from 1954 to 1999, the characteristics of precipitation changing over the Dasha River Watershed in Anhui Province and its relation to sediment yield were studied using tendency analysis and correlation analysis.Results showed that the precipitation of the Dasha River Watershed has high variability. In those 46 years, 34% of spring rainfall, 58% of summer rainfall and 30% of annual rainfall will be considered anomaly. The gray correlation analysis shows that sediment discharge correlates most closely with the frequency of the rainstorm with a daily precipitation above 100mm, secondly with the frequency of the rainstorm with a daily precipitation of 50-100mm, and thirdly with the number of rainy days. Their correlation coefficients are 0.98,0.90 and 0.85 respectively. In addition,the paper suggests the major countermeasures and methods for controlling of soil and water losses in this area.展开更多
The under-sampled middle and western branches of Shade River Watershed (SRW) in SE Ohio were investigated as part of the Ohio University—U.S. Environmental Protection Agency (EPA) STAR grant. This project was for mon...The under-sampled middle and western branches of Shade River Watershed (SRW) in SE Ohio were investigated as part of the Ohio University—U.S. Environmental Protection Agency (EPA) STAR grant. This project was for monitoring the quality of watersheds in Ohio and classifying them according to their physical, chemical, and biological conditions. Water samples, as well as field parameters, were taken at twenty-two sites for chemical analyses. The ions analyzed included Ca, Mg, Na, Fe, Mn, Al, NO3, SO4, HCO3, and total PO4, while the field parameters measured included pH, dissolved oxygen (DO), total dissolved solids (TDS), electrical conductivity (EC), and alkalinity. To assess the water quality within the SRW, the analyzed ions and field parameters were compared to the USEPA criteria for the survival of aquatic life. Analytical results showed that the watershed is dominated by Ca-HCO3waters with DO, Fe, Mn, and PO4being the main causes of impairment within the streams. The relatively elevated concentrations of manganese and less extent iron may be associated with the local geology and the acidic nature of the soils. The high alkalinity and calcium concentrations are due to the limestone geology. The elevated phosphate concentration may be due to anthropogenic sources, fertilizers, or contributions from phosphorus-rich bedrock that differs geochemically from other areas.展开更多
Changes in land use and land cover (LULC) influence hydrological processes in a watershed. This study analyses the dynamics of LULC in the Kimemi watershed from 1987 to 2021. GIS and remote sensing tools as well as la...Changes in land use and land cover (LULC) influence hydrological processes in a watershed. This study analyses the dynamics of LULC in the Kimemi watershed from 1987 to 2021. GIS and remote sensing tools as well as landscape pattern analysis were used to achieve this purpose. The results reveal that the LULC change is globally marked by an increase in the bare land and building at the expense of the low vegetation (grassland). Between 1987 and 2011, the bare land and buildings (Tg = 61.33%) and the woodland (Tg = 34.2%) classes increased, whereas the grassland class decreased (Tg = -39.5%). On the other hand, between 2011 and 2015, the bare land and building class still increased (Tg = 29.9%) while that of grassland and woodland decreased with Tg = -37.3% and Tg = -4.9%, respectively. Finally, the dynamics observed from 2015 to 2021 is marked by small changes between classes with Tg values of 2.1%, 1.9% and -8.9%, respectively, for the bare land and building, grassland and woodland classes, respectively. The main spatial transformation processes observed are creation and dissection for the bare land and building class, and the grassland class respectively. In particular, the woodland class underwent the creation process between 1987 and 2011 before undergoing attrition (2011-2015-2021). Reduced vegetated areas give rise to new planning decisions to mitigate the hydrological risks that could result from this situation.展开更多
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0604403)National Natural Science Foundation of China(No.41801108)。
文摘Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the development of transborder watershed.In this study,we used global historical land cover data,the hemeroby index model,and synthesized major historical events to analyze how human activity intensity changed in the Heilongjiang River(Amur River in Russia)watershed(HLRW).The results showed that there was a strong spatial heterogeneity in the variation of human activity intensity in the HLRW over the past century(1900-2016).On the Chinese side,the human activity intensity change shifted from the plain areas for agricultural reclamation to the mountainous areas for timber extraction.On the Russian side,human activity intensity changes mostly concentrated along the Trans-Siberian Railway and the Baikal-Amur Mainline.Localized variation of human activity intensity tended to respond to regional events while regionalized variation tends to reflect national policy change or broad international events.The similarities and differences between China and Russia in policies and positions in international events resulted in synchronous and asynchronous changes in human activity intensity.Meanwhile,policy shifts were often confined by the natural features of the watershed.These results reveal the historical origins and fundamental connotations of watershed development and contribute to formulating regional management policies that coordinate population,eco-nomic,social,and environmental activities.
基金Supported by the National Basic Research Program of China(973 Program,2010CB955905)the Fund of Chengde Municipal Finance Bureau(CZ2013004)~~
文摘[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to process TM/ETM+ image based on field work and investigation of Hotan Oasis. These interpretation dates have been reclassified to desert and oasis. Then, the driving mechanism of desertification and oasification was analyzed. [Result] The analysis indicated that the oasification velocity(91.24 km^2/year) was faster than the desertification’s(77.78 km^2/year),with a rapid growth of 5.59 km^2/year in oasis area in the mid-lower reaches of the Hotan River. [Coclusion] There existed spatial coupling linked by water consumption between oasification in the middle reaches and desertification in the lower reaches.And the changing trends were opposite not only for the oasis area, but also for the oasification area and oasification velocity between the middle and the lower reaches of the Hotan River Basin. With climatic warming, population growth, economical development, scientific and technological progress, and in particular the implementation of national policies, the cropland area increased and oasis expanded, speeding up the oasification and water consumption in the middle reaches. Hence it is urgent to prevent the Hotan Oasis from exacerbating the current water supply-demand imbalance and prohibit the expansion of arable land to transitional belt between oasis and desert.
基金National Natural Science Foundation of China, No.40461002 The Key Project of the Ministry of Education, N0.205184
文摘Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the biological geomorphologic features and growth process of Tamarix nabkhas in the middle and lower reaches of the Hotan River, Xinjiang. And the results indicate that the ecological type of Tamarix in the study area is a kind of Tugaic soil habitat based on the deep soil of the Populus Diversifolia forests and shrubs. This type of habitat can be divided into three kinds of sub-habitats which demonstrate the features of ecological environment of Tamarix nabkhas during the differential developed phases. Meanwhile, the Tamar, ix nabkha can exert intensified disturbance current on wind-sand flow on the ground,and its root and stems not only have strong potential of sprouting but are characteristic of wind erosion-tolerance, resistance to be buried by sand and respectively tough rigid of the lignified branches, for it has a rather longer life-time. Thus, the wind speed profile influenced by the Tamarix nabkha is different from the Phragmites nabkha and Alhagi nabkha. And the structure of the wind flow is beneficial to aeolian sand accumulating in/around Tamarix shrub, which can create unique Tamarix nabkhas with higher average gradient and longer periodicity of life. Tamarix nabkha evolution in the area experienced three stages: growth stage, mature and steady stage and withering stage. In each stage, morphological features and geomorphic process of Tamarix nabkha are different due to the discrep- ant interaction between the nabkha and aeolian sand flow.
基金supported by the National Natural Sciences Foundation of China (40871027)the Initial Project of State Key Basic R & D Program of China (2009CB426309)the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-334)
文摘Runoff formation is a complex meteorological-hydrological process impacted by many factors,especially in the inland river basin.Based on the data of daily mean air temperature,precipitation and runoff during the period of 1958-2007 in the Kaidu River watershed,this paper analyzed the changes in air temperature,precipitation and runoff and revealed the direct and indirect impacts of daily air temperature and precipitation on daily runoff by path analysis.The results showed that mean temperature time series of the annual,summer and autumn had a significant fluctuant increase during the last 50 years(P 0.05).Only winter precipitation increased significantly(P 0.05) with a rate of 1.337 mm/10a.The annual and winter runoff depthes in the last 50 years significantly increased with the rates of 7.11 mm/10a and 1.85 mm/10a,respectively.The driving function of both daily temperature and precipitation on daily runoff in annual and seasonal levels is significant in the Kaidu River watershed by correlation analysis.The result of path analysis showed that the positive effect of daily air temperature on daily runoff depth is much higher than that of daily precipitation in annual,spring,autumn and winter,however,the trend is opposite in summer.
文摘In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.
基金funded by the National Basic Research Program of China(2009CB825101)the National Natural Science Foundation of China(41071139)
文摘With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.
基金funded by the National Natural Science Foundation of China (41130638)the key innovation project of the Chinese Academy of Sciences (KZCX2-YW-QN310)the National Science and Technology Support Program (2013BAB05B03)
文摘Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape influences hydrological components will greatly improve the predictability of hydrological responses to mountain landscape changes and thus can help the government make sounder decisions. In the paper, we used the VIC (Variable Infiltration Capacity) model to conduct hydrological modeling in the upper Heihe River watershed, along with a frozen-soil module and a glacier melting module to improve the simulation. The improved model performed satisfactorily. We concluded that there are differences in the runoff generation of mountain landscape both in space and time. About 50% of the total runoff at the catchment outlet were generated in mid-mountain zone (2,900-4,000 m asl), and water was mainly consumed in low mountain region (1,700-2,900 m asl) because of the higher requirements of trees and grasses. The runoff coefficient was 0.37 in the upper Heihe River watershed. Barren landscape produced the largest runoff yields (52.46% of the total runoff) in the upper Heihe River watershed, fol- lowed by grassland (34.15%), shrub (9.02%), glacier (3.57%), and forest (0.49%). In order to simulate the impact of landscape change on hydrological components, three landscape change scenarios were designed in the study. Scenario 1, 2 and 3 were to convert all shady slope landscapes at 2,000-3,300 m, 2,000-3,700 m, and 2,000-4,000 m asl respectively to forest lands, with forest coverage rate increased to 12.4%, 28.5% and 42.0%, respectively. The runoff at the catchment outlet correspondingly declined by 3.5%, 13.1% and 24.2% under the three scenarios. The forest landscape is very important in water conservation as it reduced the flood peak and increased the base flow. The mountains as "water towers" play important roles in water resources generation and the impact of mountain landscapes on hydrology is significant.
基金Under the auspices of National Natural Science Foundation of China(No.40801069)Special Research Program for Public-welfare Forestry of China(No.200804001)
文摘This paper firstly investigated the land-use and land-cover change (LUCC) in the Hun-Taizi River water- shed, Northeast China from 1988 to 2004 based on remotely sensed images and geographic information systems (GIS) technology. Then, using the famous land-use change model of Conversion of Land Use and its Effects at Small re- gional extent (CLUE-S), this paper simulated the land use changes under historical trend (HT), urban planning (UP) and ecological protection (EP) scenarios considering urban planning and ecological protection over the next 20 years. The simulated results under UP scenario in 2020 were compared with the planning map to assess the feasibility of us- ing land-use change model to guide regional planning. Results show that forest land, dry farmland, paddy, and shrub land were the main land-use categories. Paddy and dry farmland being converted to urban area and rural settlement characterized the land-use change from 1988 to 2004. The main land-use categories changed over time. Landscape-pattem fragmentation will be worse under HT and UP scenarios, but better in EP scenario. The comparing results of simulated map with planning map in 2020 show that land-use change model is powerful tool to guide regional planning. Land-use scenarios can support regional planning and policy-making through analyzing future consequences scientifically.
基金funded by the National Natural Science Foundation of China (41771470, 51069017 and 41261090)
文摘In this paper,the performance of the classic snowmelt runoff model(SRM)is evaluated in a daily discharge simulation with two different melt models,the empirical temperature-index melt model and the energy-based radiation melt model,through a case study from the data-sparse mountainous watershed of the Urumqi River basin in Xinjiang Uyghur Autonomous Region of China.The classic SRM,which uses the empirical temperature-index method,and a radiation-based SRM,incorporating shortwave solar radiation and snow albedo,were developed to simulate daily runoff for the spring and summer snowmelt seasons from 2005 to 2012,respectively.Daily meteorological and hydrological data were collected from three stations located in the watershed.Snow cover area(SCA)was extracted from satellite images.Solar radiation inputs were estimated based on a digital elevation model(DEM).The results showed that the overall accuracy of the classic SRM and radiation-based SRM for simulating snowmeltdischarge was relatively high.The classic SRM outperformed the radiation-based SRM due to the robust performance of the temperature-index model in the watershed snowmelt computation.No significant improvement was achieved by employing solar radiation and snow albedo in the snowmelt runoff simulation due to the inclusion of solar radiation as a temperature-dependent energy source and the local pattern of snowmelt behavior throughout the melting season.Our results suggest that the classic SRM simulates daily runoff with favorable accuracy and that the performance of the radiation-based SRM needs to be further improved by more ground-measured data for snowmelt energy input.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011810) the National Natural Science Foundation of China (No. 49971039).
文摘The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.
基金Under the auspices of Project of Western Light Related to Eastern Scholar, the National Natural Science Foundation of China (No. 40471134)
文摘Under the guide of system theory, taking the oasis in the Sangong River watershed as a case study, this paper analyzes the oasis structure and function from 4 aspects including oasis spatial structure, water resources structure, vegetation structure, economic structure and their corresponding functions. The results indicate that as a typical small-scale watershed, Sangong River watershed has the relatively complete mountain-basin structure, and ecological and productive function. Because of human drastic activity the utilization rate of water resources was as high as 98.7%, and the utilization of groundwater was not reasonable, which resulted in an average annual decline of 0.353m in the water table of alluvial-diluvial-fan oasis, and an average annual increase of 0.047m in the alluvial-plain. The layout of crop and shelter forest benefits to the utilization of water and land resources. The development of oasis economy is at low level, and its eco-economic function is weak.
文摘The Lancang River Watershed is one of the most biologically diverse areas in the world. The river flows through Yunnan Province, China, which suffered serious deforestation since the 1980s;this in turn led to increased soil erosion in the region. To investigate the influence of the spatial distribution of land use and slope on soil erosion in the Lancang River Watershed, the Soil and Water Assessment Tool (SWAT) model was used to establish hydrological models using two-phase land use maps (1975 and 1985), a soil map, and meteorological data from 11 gauging stations. The satisfactory values of Nash-Sutcliffe efficiency Ens and correlation coefficient R2 during the calibration and validation period indicated that SWAT can be used in this area to simulate the average annual soil erosion under different land use scenarios change. By comparing soil erosion rate under different land use scenarios change, forests and grasslands had similar effects on preventing soil erosion. A parameter, soil erosion increment (Ei), was used to assess the effects of slope on soil erosion. The results revealed that variation in sediment yield was more sensitive to land use change for slopes exceeded 25° than for slopes being 0° - 15°. The spatial distribution of land use also had a relationship to soil erosion. Compared with the soil erosion rate in each sub-watershed using two-phase land use maps, the soil erosion rate increased when the percent cover of natural vegetation decreased. The results of this study provide baseline data for soil conservation and protection of the environment and ecology of the Lancang River Watershed in Yunnan Province.
基金Under the auspices of National Natural Science Foundation of China (No. 40601006, 40471009)National Basic Rsearch Program of China (No. 2005CB422006)
文摘Land use change in rural China since the 1980s, induced by institution reforms, urbanization, industrialization and population increase, has received more attention. However, case studies on how institution reforms affect farmers' livelihood strategies and drive land use change are scarce. By means of cropland plots investigations and interviews with farmers, this study examines livelihood strategy change and land use change in Danzam Village of Jinchuan County in the upper Dadu River watershed, eastern Tibetan Plateau, China. The results show that, during the collective system period, as surplus labor forces could not be transferred to the secondary and tertiary industries, they had to choose agricultural involution as their livelihood strategy, then the farmers had to produce more grains by land reclamation, increasing multiple cropping index, improving input of labor, fertilizer, pesticide and adopting advanced agricultural techniques. During the household responsibility system period, as labors being transferred to the secondary and tertiary industries, farmers chose livelihood diversification strategy. Therefore, labor input to grain planting was greatly reduced, which drove the transformation of grain to horticulture, vegetable or wasteland and decrease of multiple cropping index. This study provides a new insight into understanding linkages among institution reforms, livelihood strategy of smallholders and land use change in rural China.
文摘In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF.
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.
文摘Flood events vary with sub-regions, sites and time and show complex characteristics. This study investigated temporal variabilities in flood discharges and relationships with principal driving factors in data scarce Wabi Shebele River Basin. The preliminary analysis using exploratory data analysis (EDA) on annual and seasonal maximum discharge reveals that there are cycles of extreme flows at five- and ten-year intervals respectively throughout the basin. The statistical verification using the Mann-Kendall test and Quantile perturbation method indicates a significant trend in flood magnitude and frequency entire the basin in the early 21st century. For longest period (1980-2010) annual maximum stream flow shows significant positive trend (p-value < 0.05) in middle catchments and negative trend (p-value < 0.05) in eastern catchments. The years: 1986-1995, 2006-2010 are the years in which positive significant anomalies occurred in all seasons, while the years: 1980-1985, 1996-2005 are the occurrence years of significant negative anomalies. Rainfall from climate drivers;DA, BE, VS and fraction of sand from environmental background drivers;fraction of forest and population density from external factors were identified as the powerful driving factors of flood variabilities in the Wabi Shebele River Basin.
文摘The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data includes three inputs; each of them belongs to one part of three zones of a fluvial system. The three parts of the Sefidrood River fluvial system include Zone 1,a sub-watershed as degradation modeling site,Zone 2,Sefidrood Dam as dam site,and Zone 3,17km away from the Sefidrood River path to the Caspian Sea as ending point site. The degradation model in the Zone 1 provides a suitable mean for decision support system to decrease the human impacts on each small district. The maximum number for degradation coefficient belongs to the small district with the highest physiographic density,relatively cumulative activities,and a lower figure for the habitat vulnerability. The human degradation impact were not limited to the upstream. The investigation to the Sefidrood Dam and ending point of the Sefidrood River depicts that sedimentation continues as a significant visual impact in the Sefidrood Dam reservoir and the estuary.
基金Under the auspices of the Natural Science Foundation of Anhui Education Office (No. 2003KJ102)Special Fund Project of Anhui Provincial Irrigation Office (No. 2001-11)
文摘The study on sediment production and its relationship with climatic and hydrological factors in watershed is a major environment issue of concern in the international community. Based on the observational records covering the period from 1954 to 1999, the characteristics of precipitation changing over the Dasha River Watershed in Anhui Province and its relation to sediment yield were studied using tendency analysis and correlation analysis.Results showed that the precipitation of the Dasha River Watershed has high variability. In those 46 years, 34% of spring rainfall, 58% of summer rainfall and 30% of annual rainfall will be considered anomaly. The gray correlation analysis shows that sediment discharge correlates most closely with the frequency of the rainstorm with a daily precipitation above 100mm, secondly with the frequency of the rainstorm with a daily precipitation of 50-100mm, and thirdly with the number of rainy days. Their correlation coefficients are 0.98,0.90 and 0.85 respectively. In addition,the paper suggests the major countermeasures and methods for controlling of soil and water losses in this area.
文摘The under-sampled middle and western branches of Shade River Watershed (SRW) in SE Ohio were investigated as part of the Ohio University—U.S. Environmental Protection Agency (EPA) STAR grant. This project was for monitoring the quality of watersheds in Ohio and classifying them according to their physical, chemical, and biological conditions. Water samples, as well as field parameters, were taken at twenty-two sites for chemical analyses. The ions analyzed included Ca, Mg, Na, Fe, Mn, Al, NO3, SO4, HCO3, and total PO4, while the field parameters measured included pH, dissolved oxygen (DO), total dissolved solids (TDS), electrical conductivity (EC), and alkalinity. To assess the water quality within the SRW, the analyzed ions and field parameters were compared to the USEPA criteria for the survival of aquatic life. Analytical results showed that the watershed is dominated by Ca-HCO3waters with DO, Fe, Mn, and PO4being the main causes of impairment within the streams. The relatively elevated concentrations of manganese and less extent iron may be associated with the local geology and the acidic nature of the soils. The high alkalinity and calcium concentrations are due to the limestone geology. The elevated phosphate concentration may be due to anthropogenic sources, fertilizers, or contributions from phosphorus-rich bedrock that differs geochemically from other areas.
文摘Changes in land use and land cover (LULC) influence hydrological processes in a watershed. This study analyses the dynamics of LULC in the Kimemi watershed from 1987 to 2021. GIS and remote sensing tools as well as landscape pattern analysis were used to achieve this purpose. The results reveal that the LULC change is globally marked by an increase in the bare land and building at the expense of the low vegetation (grassland). Between 1987 and 2011, the bare land and buildings (Tg = 61.33%) and the woodland (Tg = 34.2%) classes increased, whereas the grassland class decreased (Tg = -39.5%). On the other hand, between 2011 and 2015, the bare land and building class still increased (Tg = 29.9%) while that of grassland and woodland decreased with Tg = -37.3% and Tg = -4.9%, respectively. Finally, the dynamics observed from 2015 to 2021 is marked by small changes between classes with Tg values of 2.1%, 1.9% and -8.9%, respectively, for the bare land and building, grassland and woodland classes, respectively. The main spatial transformation processes observed are creation and dissection for the bare land and building class, and the grassland class respectively. In particular, the woodland class underwent the creation process between 1987 and 2011 before undergoing attrition (2011-2015-2021). Reduced vegetated areas give rise to new planning decisions to mitigate the hydrological risks that could result from this situation.