Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of...Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.展开更多
In this paper, we investigated the potential of Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) for flood monitoring. The proposed approach was based on the polarized ratio index (PRI), wh...In this paper, we investigated the potential of Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) for flood monitoring. The proposed approach was based on the polarized ratio index (PRI), which was computed by using AMSR-E data at 37GHz, vertically and horizontally polarized brightness temperature values and the water surface fraction (WSF) got by using the PRI at 37GHz. Moderate Resolution Imaging Spectrora-diometer (MODIS) data were used to validate the WSF values. The analysis of flood and waterlogging using the WSF map on July 6, 2003 indicates that the use of WSF for flood and waterlogging disaster assessment is feasible. Utilizing the correlation of WSF derived from AMSR-E and water area derived from MODIS, the water area of the Huaihe River Basin were computed by only using AMSR-E data in the summer of 2003, which overcame the influence of cloud on water estimation using MODIS data during flood.展开更多
Seasonal rainfall predictability over the Huaihe River basin is evaluated in this paper on the basis of 23-year(1981-2003) retrospective forecasts by 10 climate models from the Asia-Pacific Economic Cooperation(APEC) ...Seasonal rainfall predictability over the Huaihe River basin is evaluated in this paper on the basis of 23-year(1981-2003) retrospective forecasts by 10 climate models from the Asia-Pacific Economic Cooperation(APEC) Climate Center(APCC) multi-model ensemble(MME) prediction system.It is found that the summer rainfall variance in this basin is largely internal,which leads to lower rainfall predictability for most individual climate models.By dividing the 10 models into three categories according to their sea surface temperature(SST) boundary conditions including observed,predicted,and persistent SSTs,the MME deterministic predictive skill of summer rainfall over Huaihe River basin is investigated.It is shown that the MME is effective for increasing the current seasonal forecast skill.Further analysis shows that the MME averaged over predicted SST models has the highest rainfall prediction skill,which is closely related to model's capability in reproducing the observed dominant modes of the summer rainfall anomalies in Huaihe River basin.This result can be further ascribed to the fact that the predicted SST MME is the most effective model ensemble for capturing the relationship between the summer rainfall anomalies over Huaihe River basin and the SST anomalies(SSTAs) in equatorial oceans.展开更多
A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR rean...A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.展开更多
Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow va...Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow variations were analyzed using Modified Mann-Kendall(MM-K) trend test and Continuous Wavelet Transform(CWT) methods at 9 hydrological stations in the Huaihe River Basin. It was found that: 1) streamflow mainly occurs during May to September, accounting for 70.4% of the annual total streamflowamount with Cv values between 0.16–0.85 and extremum ratio values between 1.70–23.90; 2) decreased streamflow can be observed in the Huaihe River Basin and significant decreased streamflow can be detected during April and May, which should be the results of precipitation change and increased irrigation demand; 3) significant periods of 2–4 yr were detected during the 1960 s, the 1980 s and the 2000 s. Different periods were found at stations concentrated within certain regions implying periods of streamflow were caused by different influencing factors for specific regions; 4) Pacific Decadal Oscillation(PDO) has the most significant impacts on monthly streamflow mainly during June. Besides, Southern Oscillation Index(SOI), North Atlantic Oscillation(NAO) and the Ni?o3.4 Sea Surface Temperature(Ni?o3.4) have impacts on monthly streamflow with three months lags, and was less significant in time lag of six months. Identification of critical climatic factors having impacts on streamflow changes can help to predict monthly streamflow changes using climatic factors as explanatory variables. These findings were well corroborated by results concerning impacts of El Nino-Southern Oscillation(ENSO) regimes on precipitation events across the Huaihe River Basin. The results of this study can provide theoretical background for basin-scale management of water resources and agricultural irrigation.展开更多
The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are exp...The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are explored based on daily meteorological data contained in the Daily Surface Climate Dataset for China (V3.0) during the period 1960–2012. Results show that winter snowfall in the YHRB exhibits consistent anomalies over the whole region for the interannual variation during 1960–2012. Further analysis suggests that winter snowfall anomalies in the YHRB are closely linked to the anomalous wintertime SCAND activity. When there is more winter snowfall in the YHRB, SCAND is usually in a positive phase, accompanied by a strengthened Urals blocking high and East Asian trough, which is conducive to strengthened cold-air activity, intensified vertical motions, and more water vapor transport in the YHRB. In contrast, less winter snowfall in the YHRB usually happens in the negative phase of SCAND. Our results provide useful information to better understand the relevant mechanism responsible for anomalous winter snowfall in this area.展开更多
[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method]...[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.展开更多
Currently the deteriorated water quality for Huaihe River Basin(HRB) in China was still serious because of the negative influence multiple pollution sources including animal manure. However, little attention was paid ...Currently the deteriorated water quality for Huaihe River Basin(HRB) in China was still serious because of the negative influence multiple pollution sources including animal manure. However, little attention was paid to the potential risk of animal manure for farmland and water quality of HRB. This study was quantified and forecasted animal manure risk and its spatiotemporal variations in HRB from 2008 to 2018, through pollution discharge coefficient method and pollution load calculation, combined with kriging interpolation method of ArcGIS technology, based on statistics principle. All the data were originated from livestock and poultry breeding in HRB from 2008 to 2018. The future risk of farmland and water environment in HRB was further forecasted. The results indicated that the livestock and poultry manure has become a key pollution source causing a negative influence on farmland and water quality owing to a large amount of animal manure production without efficient recycle utilization. The chemical oxygen demand(COD) and total nitrogen(TN) discharge of animal manure in HRB almost accounted for 17.00% and 39.00% of the whole COD and TN discharge in China. The diffusion concentration of TN and TP in those regions of Shangqiu, Zhoukou, Heze, Zhumadian, Luohe, Jining, Xuchang,Kaifeng, Taian and Zhengzhou of HRB has exceeded the threshold value 10.00 mg/L of TN and 0.08 mg/L of TP, causing water eutrophication and cancer villages. The assessment of farmland and water quality risk revealed that Zhumadian, Zhoukou, Shangqiu, Taian, Jining, Heze, Linyi and Rizhao belonged to high risk areas in HRB, which were still obtained high farmland and water quality risk index in 2030. The results provided insight into an important significance of sustainable balance of livestock and poultry development and ecosystem in HRB.展开更多
To improve the understanding of the CO_(2) exchange and the cycling of energy and water between the land surface and atmosphere over a typical hilly forest in southeastern China,a long-term field experimental observat...To improve the understanding of the CO_(2) exchange and the cycling of energy and water between the land surface and atmosphere over a typical hilly forest in southeastern China,a long-term field experimental observatory was established in Huainan,Anhui Province.Here,the authors briefly describe the three parts of ongoing research activities:the environmental monitoring at the site,the meteorological observations on a high tower,and particularly the intensive measurement of soil-vegetation-atmosphere interaction on a lower tower.Specifically,the diurnal variation of basic meteorological variables on a typical clear day(13 July 2018),and their temporal variation in the first three months of the low tower’s operation(4 June to 31 August 2018),and in combination with simultaneous data from the high tower,are analyzed.Results show that the data demonstrate reasonable variabilities,and the variables exhibit significant diurnal variation,characteristics of summer values,and considerable differences in summer months.The daily and monthly average albedos above the forest canopy were both 0.13.The daily average soil CO_(2) concentration was 1726 and 4481 ppm at 2 and 10 cm,respectively.The soil CO_(2) concentration changed with soil volumetric moisture contents,but showed a weak correlation with soil temperature in summer 2018.As the observatory continues to run and data continue to be collated,further investigation of the long-term variation of monsoon characteristics should be performed in the future.The experiment is useful in ecosystem and atmosphere interaction research,as well as for the development and evaluation of climate models,in the transitional climate zone of the Huaihe River basin.展开更多
By the daily precipitation data at 18 meteorological stations of Huaihe River basin in recent 50 years,the temporal-spatial distribution features of the rainstorm over Huaihe River basin during 1958- 2007 and its infl...By the daily precipitation data at 18 meteorological stations of Huaihe River basin in recent 50 years,the temporal-spatial distribution features of the rainstorm over Huaihe River basin during 1958- 2007 and its influence on agriculture production were analyzed. The results showed that the interannual change magnitudes of the rainstorm days and rainstorm amount from 1958 to 2007 were fierce. Especially in the late 1990 s,rainstorm days and rainstorm amount increased obviously. As a result of interannual variability of East Asian summer monsoon and East Asian circulation system,rainstorm had significant quasi-2-year periodic oscillation in summer. Because of water vapor and terrain,rainstorm mainly concentrated in the southwest over the Huaihe River basin,but was less in the north.展开更多
Taking the rainstorm flood disaster of Huaihe River basin as the research object,according to the principles of risk assessment for natural disasters,starting from the fatalness of inducing factors and the vulnerabili...Taking the rainstorm flood disaster of Huaihe River basin as the research object,according to the principles of risk assessment for natural disasters,starting from the fatalness of inducing factors and the vulnerability of hazard bearing body,the weight of each impact factor was calculated by using AHP. By using spatial analysis and statistical function of GIS,the integrated risk chart of rainstorm flood disaster in Huaihe River basin was obtained. The results showed that the high risk areas of rainstorm flood disaster in Huaihe River basin mainly distributed in the southern part of Henan,the central northern part of Anhui and eastern part of Jiangsu Province. Due to higher fatalness of inducing factors in southern Henan,there was high risk in the region. Central Anhui and east Jiangsu were not only high-fatalness zones but also high vulnerability zones of population and economy.展开更多
[Objective]The research aimed to analyze formation reason of the strong squall weather in the Yellow River and Huaihe River basins on June 3,2009.[Method]Using American NCEP 1°×1° reanalysis data,observ...[Objective]The research aimed to analyze formation reason of the strong squall weather in the Yellow River and Huaihe River basins on June 3,2009.[Method]Using American NCEP 1°×1° reanalysis data,observation data at automatic weather station,conventional meteorological data,FY-2C satellite cloud image and Doppler weather radar data in Shangqiu,circulation background situation of a strong squall line case on June 3,2009 in the Yellow River and Huaihe River basins was conducted diagnostic analysis.Then,formation reason of the squall weather was discussed.[Result]Increasing convective instable stratification was the favorable situation.Translot in the rear of northeast cold vortex leaded cold air to go south.The rising airflow created by ground meso-scale convergence was as trigger mechanism of the convection.Water vapor from the south continuously supplied.Finally,squall line was formed,and developed.It was a high incidence zone of the thunderstorm and squall line near dry line.[Conclusion]The research provided reference for the future similar weather forecast.展开更多
Arsenic(As),fluoride(F^(−))are both ubiquitous in groundwater,and co-exposure to these elements through contaminated drinking water may cause detrimental effects on human health more in comparison with individual expo...Arsenic(As),fluoride(F^(−))are both ubiquitous in groundwater,and co-exposure to these elements through contaminated drinking water may cause detrimental effects on human health more in comparison with individual exposure.As,F^(−)co-occurrence in groundwater of the inland plain in Huaihe River Basin,China is a major concern,where inhabitants are rely on groundwater as the leading water source for drinking to date.This work employs an approach of hydrochemical analysis and modelling to identify the possible origin of As and F^(−),to analyze co-enrichment mechanism,and to estimate the associated exposure risk.The results shows presence of elevated As and F^(−)concentrations is an important factor affecting groundwater quality from 62 groundwater samples.The recorded As concentrations vary from 0.23 to 20.40μg/L,with a mean of 5.95μg/L,F^(−)concentrations vary from 0.54 to 2.60μg/L,with a mean of 1.29 mg/L,and 8%of samples are simultaneously above their permissible limits in drinking water by the WHO.Groundwater with As,F^(−)co-contamination is occurred within reducing and alkaline aquifers,and its chemical type is HCO_(3)–Na.The hydrochemical processes involved in the co-contamination are reductive desorption,evaporation,and ion exchange,which are controlled by local geology,geomorphology,and hydrochemistry.Groundwater As is derived and released by reductive desorption and F^(−)is mainly originated by fluorite dissolution.Groundwater As,F^(−)are geogenic sources,and the mechanisms for co-contamination are associated with high elemental abundance,flat terrain,alkaline and reductive groundwater conditions.The research provides a case study about groundwater As,F^(−)co-contamination,which may be enhance understanding the co-enrichment mechanism in semi-humid areas.展开更多
Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are anal...Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are analyzed. Annual maximum series (AM) and peak over threshold series (POT) are selected to simulate the probability distribution of extreme pre- cipitation. The results show that positive trend of annual maximum precipitation is detected at most of used stations, only a small number of stations are found to depict a negative trend during the past five decades, and none of the positive or negative trend is significant. The maximum precipitation event almost occurred in the flooding period during the 1960s and 1970s. By the L-moments method, the parameters of three extreme distributions, i.e., Gen- eralized extreme value distribution (GEV), Generalized Pareto distribution (GP) and Gamma distribution are estimated. From the results of goodness of fit test and Kolmogorov-Smirnov (K-S) test, AM series can be better fitted by GEV model and POT series can be better fitted by GP model. By the comparison of the precipitation amounts under different return levels, it can be found that the values obtained from POT series are a little larger than the values from AM series, and they can better simulate the observed values in the Huaihe River Basin.展开更多
This study presents a soil and water integrated model(SWIM) and associated statistical analyses for the Huaihe River Basin(HRB) based on daily meteorological, river runoff, and water resource data encompassing the per...This study presents a soil and water integrated model(SWIM) and associated statistical analyses for the Huaihe River Basin(HRB) based on daily meteorological, river runoff, and water resource data encompassing the period between 1959 and 2015. The aim of this research is to quantitatively analyze the rate of contribution of upstream runoff to that of the midstream as well as the influence of climate change and human activities in this section of the river. Our goal is to explain why extreme precipitation is concentrated in the upper reaches of the HRB while floods tend to occur frequently in the middle reaches of this river basin. Results show that the rate of contribution of precipitation to runoff in the upper reaches of the HRB is significantly higher than temperature. Data show that the maximum contribution rate of upstream runoff to that of the midstream can be as high as 2.23%, while the contribution of temperature is just 0.38%. In contrast, the rate of contribution of human activities to runoff is 87.20% in the middle reaches of the HRB, while that due to climate change is 12.80%. Frequent flood disasters therefore occur in the middle reaches of the HRB because of the combined effects of extreme precipitation in the upper reaches and human activities in the middle sections.展开更多
There have been substantial conflicts in the human-water relationship in the Huaihe River Basin (HRB). To achieve sustainable economic development without degrading the water environment in the HRB, we develop a thr...There have been substantial conflicts in the human-water relationship in the Huaihe River Basin (HRB). To achieve sustainable economic development without degrading the water environment in the HRB, we develop a three-dimensional water environmental sup- porting capacity (WESC) model based on water environmental carrying capacity (WECC), water environmental pressure (WEP), and water pollution prevention and control capacity (WPPC). Geographic information systems spatial analysis with the analytical hierarchy process method and dynamic weighted summation is applied. Several proposals for suitable locations for industry and environmental protection strategies for water were presented. The following results were obtained. (1) The spatial differences in WECC are substantial; areas with high-value WECC zones are mainly located along the main stream of the Huaihe River on the south side. WEP is generally high, with an overall low level of pollution prevention and control in the whole HRB. WPPC and WEP show high spatial overlapping due to the fact that areas with higher environmental pollution usually have high level of economic development, and thus have a strong capacity for pollution control. (2) Overall, WESC is moderate in the HRB. In particular, areas with a high WESC value only account for 56.24% of the HRB in 2010 Distinct differences in WESC also exist between areas located in the south compared with in the north of the basin, and areas alongside the downstream region compared with alongside the upstream and midstream regions. (3) Consequently, according to the guidance for indus- try zoning in the HRB, the areas in the south and alongside the downstream and sub-streams with a low WEP value and high WECC and WPPC, traditional industries should be developed based on strict environmental access and pollution emission standards. While for the areas along the midstream of the HRB and along the whole Yishusi River Basin, which have a high WEP value, industrial restructuring and technological upgrading are suggested. Action should be taken to limit development and protect the environment in the upstream region of the basin which is a key source of drinking water, in the eastern route along the line of the South-toNorth Water Diversion Project, and in the ecologically fragile region alongside the basin. This will ensure good environmental functionality including subsistent provision of clean water, while at the same time satisfying the urgent need to adjust, transform, and upgrade the industrial structure.展开更多
Here we present the results from the composite analyses of the atmospheric circulations and physical quantity fields associated with rainy-season for the selected floods cases over the Yangtze and Huaihe River basins ...Here we present the results from the composite analyses of the atmospheric circulations and physical quantity fields associated with rainy-season for the selected floods cases over the Yangtze and Huaihe River basins for the 21 years(1990–2010),using the daily rain gauge measurements taken in the 756 stations throughout China and the NCEP/reanalysis data for the rainyseasons(June–July)from 1990 to 2010.The major differences in the atmospheric circulations and physical quantity fields between the Yangtze and Huaihe River basins are as follows:for flooding years of the Yangtze River Basin,the South Asia high center is located further east than normal,the blocking high over the Urals and the Sea of Okhotsk maintains,and the Meiyu front is situated near 30°N whereas for flooding years of the Huaihe River Basin,the South Asia high center is further west than normal,the atmospheric circulations over the mid and high latitudes in the Northern Hemisphere are of meridional distribution,and the Meiyu front is situated near 33°N.In addition,there are distinct differences in water vapor sources and associated transports between the Yangtze and Huaihe River basins.The water vapor is transported by southwesterly flows from the Bay of Bengal and monsoon flows over the South China Sea for flooding years of the Yangtze River Basin whereas by southeast monsoons from the eastern and southern seas off China and monsoon flows over the South China Sea for flooding years of the Huaihe River Basin.展开更多
The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscale hydrological model for the assessment of the effects of climate change on water resources.The monthly discharge from 1953...The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscale hydrological model for the assessment of the effects of climate change on water resources.The monthly discharge from 1953 through 1985 in the Huaihe River Basin is simulated.The sensitivity analysis on runoff is made under assumed climatic scenarios.There is a good agreement between the observed and simulated runoff.Due to the increase of time interval and decrease of precipitation intensity on monthly time scale,there is no monthly runoff in some model girds as the momhly hydrological model is applied to the Huaihe River Basin.Two methods of downscaling monthly precipitation to daily resolution are validated by running the Xin'anjiang model with monthly data at a daily time step.and the model outputs are more realistic than the monthly hydrological model.The metbods of downscaling of monthly precipitation to daily resolution may provide an idea in solving the problem of the shortage of daily data.In the research of the climate change on water resources,the daily hydrological model can be used instead of the monthly one.展开更多
Multi-source weighted-ensemble precipitation(MSWEP)is one of the most popular merged global precipitation products with long-term spanning and high spatial resolution.While various studies have acknowledged its abilit...Multi-source weighted-ensemble precipitation(MSWEP)is one of the most popular merged global precipitation products with long-term spanning and high spatial resolution.While various studies have acknowledged its ability to accurately estimate precipitation in terms of temporal dynamics,its performance regarding spatial pattern and extreme rainfall is overlooked.To fill this knowledge gap,the daily precipitation of two versions of MSWEP(MSWEP V2.1&V2.2)are compared with that of three representative satellite-and reanalysis-based products,namely the Tropical Rainfall Measuring Mission(TRMM 3B42 V7),the climate prediction center morphing technique satellite-gauge merged product(CMORPH BLD),and the fifth-generation reanalysis product of the European Centre for Medium Range Weather Forecasts(ERA5).The comparison is made according to the dense daily rainfall observations from 539 rain gauges over the Huaihe River Basin in China during 2006–2015.The results show that MSWEP V2.1,MSWEP V2.2 and CMORPH BLD have better performance on temporal accuracy of precipitation estimation,followed by ERA5 and TRMM 3B42V7.MSWEPs yield the most even spatial distribution across the basin since it takes full advantage of the multi datasets.As the weighted-ensemble method is independently carried out on each grid in MSWEPs,the spatial distribution of local precipitation is changed by different source data,which results in that MSWEPs perform worse than CMORPH BLD in terms of the representation of precipitation spatial pattern.In addition,the capability of MSWEPs to describe the spatial structure in the rainy season is lower than that in the dry season.Strong precipitation(≥100 mm/d)events are better represented in TRMM 3B42 V7 products than in MSWEPs.Finally,based on the comparison results,we suggest to improve the merging algorithm of MSWEP by considering the precipitation spatial self-correlation and adjusting the merging weights based on the performance of the source datasets under different precipitation intensities.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.52279016,51909106,51879108,42002247,41471160)Natural Science Foundation of Guangdong Province,China(No.2020A1515011038,2020A1515111054)+1 种基金Special Fund for Science and Technology Development in 2016 of Department of Science and Technology of Guangdong Province,China(No.2016A020223007)the Project of Jinan Science and Technology Bureau(No.2021GXRC070)。
文摘Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.
基金Under the auspices of the Foundation of the Ministry of Science and Technology (No 2003DKA1T007, No 2005DFA20010)
文摘In this paper, we investigated the potential of Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) for flood monitoring. The proposed approach was based on the polarized ratio index (PRI), which was computed by using AMSR-E data at 37GHz, vertically and horizontally polarized brightness temperature values and the water surface fraction (WSF) got by using the PRI at 37GHz. Moderate Resolution Imaging Spectrora-diometer (MODIS) data were used to validate the WSF values. The analysis of flood and waterlogging using the WSF map on July 6, 2003 indicates that the use of WSF for flood and waterlogging disaster assessment is feasible. Utilizing the correlation of WSF derived from AMSR-E and water area derived from MODIS, the water area of the Huaihe River Basin were computed by only using AMSR-E data in the summer of 2003, which overcame the influence of cloud on water estimation using MODIS data during flood.
基金supported by the National Natural Science Foundation of China (41175073)the National Science Foundation of China (NSFC)-Yunnan Province Joint Grant (U1133603)+1 种基金the National Basic Research Program of China (2010CB428403 and 2009CB421406)the NOAA Climate Program Office and Michigan State University (NA10OAR4310246 and NA12OAR 4310081)
文摘Seasonal rainfall predictability over the Huaihe River basin is evaluated in this paper on the basis of 23-year(1981-2003) retrospective forecasts by 10 climate models from the Asia-Pacific Economic Cooperation(APEC) Climate Center(APCC) multi-model ensemble(MME) prediction system.It is found that the summer rainfall variance in this basin is largely internal,which leads to lower rainfall predictability for most individual climate models.By dividing the 10 models into three categories according to their sea surface temperature(SST) boundary conditions including observed,predicted,and persistent SSTs,the MME deterministic predictive skill of summer rainfall over Huaihe River basin is investigated.It is shown that the MME is effective for increasing the current seasonal forecast skill.Further analysis shows that the MME averaged over predicted SST models has the highest rainfall prediction skill,which is closely related to model's capability in reproducing the observed dominant modes of the summer rainfall anomalies in Huaihe River basin.This result can be further ascribed to the fact that the predicted SST MME is the most effective model ensemble for capturing the relationship between the summer rainfall anomalies over Huaihe River basin and the SST anomalies(SSTAs) in equatorial oceans.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110202)the National Natural Science Foundation of China (Grant Nos. 41175073, 41471016, and U1133603)
文摘A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.
基金Under the auspices of National Science Foundation of China(No.41601023,41771536)National Science Foundation for Distinguished Young Scholars of China(No.51425903)+2 种基金State Key Laboratory of Earth Surface Processes and Resource Ecology(No.2017-KF-04)Creative Research Groups of National Natural Science Foundation of China(No.41621061)Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-201720)
文摘Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow variations were analyzed using Modified Mann-Kendall(MM-K) trend test and Continuous Wavelet Transform(CWT) methods at 9 hydrological stations in the Huaihe River Basin. It was found that: 1) streamflow mainly occurs during May to September, accounting for 70.4% of the annual total streamflowamount with Cv values between 0.16–0.85 and extremum ratio values between 1.70–23.90; 2) decreased streamflow can be observed in the Huaihe River Basin and significant decreased streamflow can be detected during April and May, which should be the results of precipitation change and increased irrigation demand; 3) significant periods of 2–4 yr were detected during the 1960 s, the 1980 s and the 2000 s. Different periods were found at stations concentrated within certain regions implying periods of streamflow were caused by different influencing factors for specific regions; 4) Pacific Decadal Oscillation(PDO) has the most significant impacts on monthly streamflow mainly during June. Besides, Southern Oscillation Index(SOI), North Atlantic Oscillation(NAO) and the Ni?o3.4 Sea Surface Temperature(Ni?o3.4) have impacts on monthly streamflow with three months lags, and was less significant in time lag of six months. Identification of critical climatic factors having impacts on streamflow changes can help to predict monthly streamflow changes using climatic factors as explanatory variables. These findings were well corroborated by results concerning impacts of El Nino-Southern Oscillation(ENSO) regimes on precipitation events across the Huaihe River Basin. The results of this study can provide theoretical background for basin-scale management of water resources and agricultural irrigation.
基金jointly supported by jointly supported by the National Key Research and Development Program of China(Grant No.2016YFA0600702)the National Natural Science Foundation of China(Grant No.41625019)
文摘The temporal and spatial characteristics of winter snowfall in the Yangtze–Huaihe River Basin (YHRB) of China and its possible connection with Scandinavian Atmospheric Teleconnection Pattern (SCAND) anomalies are explored based on daily meteorological data contained in the Daily Surface Climate Dataset for China (V3.0) during the period 1960–2012. Results show that winter snowfall in the YHRB exhibits consistent anomalies over the whole region for the interannual variation during 1960–2012. Further analysis suggests that winter snowfall anomalies in the YHRB are closely linked to the anomalous wintertime SCAND activity. When there is more winter snowfall in the YHRB, SCAND is usually in a positive phase, accompanied by a strengthened Urals blocking high and East Asian trough, which is conducive to strengthened cold-air activity, intensified vertical motions, and more water vapor transport in the YHRB. In contrast, less winter snowfall in the YHRB usually happens in the negative phase of SCAND. Our results provide useful information to better understand the relevant mechanism responsible for anomalous winter snowfall in this area.
基金Supported by Meteorological Open Research Fund of Huaihe River basin,China(HRM200805)Soft Science Research Plan of Ministry of Science and Technology,China(2007GXS3D087)
文摘[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.
基金Under the auspices of the National Natural Science Foundation of China(No.31070401)the College Natural Science Foundation of Major Project of Anhui+2 种基金China(No.KJ2018ZD033)the University Synergy Innovation Program of Anhui Province(No.GXXT-2020-075)Engineering Research Center of Biomembrance Water Purification and Utilization Technology,Ministry of Education,Anhui University of Technology。
文摘Currently the deteriorated water quality for Huaihe River Basin(HRB) in China was still serious because of the negative influence multiple pollution sources including animal manure. However, little attention was paid to the potential risk of animal manure for farmland and water quality of HRB. This study was quantified and forecasted animal manure risk and its spatiotemporal variations in HRB from 2008 to 2018, through pollution discharge coefficient method and pollution load calculation, combined with kriging interpolation method of ArcGIS technology, based on statistics principle. All the data were originated from livestock and poultry breeding in HRB from 2008 to 2018. The future risk of farmland and water environment in HRB was further forecasted. The results indicated that the livestock and poultry manure has become a key pollution source causing a negative influence on farmland and water quality owing to a large amount of animal manure production without efficient recycle utilization. The chemical oxygen demand(COD) and total nitrogen(TN) discharge of animal manure in HRB almost accounted for 17.00% and 39.00% of the whole COD and TN discharge in China. The diffusion concentration of TN and TP in those regions of Shangqiu, Zhoukou, Heze, Zhumadian, Luohe, Jining, Xuchang,Kaifeng, Taian and Zhengzhou of HRB has exceeded the threshold value 10.00 mg/L of TN and 0.08 mg/L of TP, causing water eutrophication and cancer villages. The assessment of farmland and water quality risk revealed that Zhumadian, Zhoukou, Shangqiu, Taian, Jining, Heze, Linyi and Rizhao belonged to high risk areas in HRB, which were still obtained high farmland and water quality risk index in 2030. The results provided insight into an important significance of sustainable balance of livestock and poultry development and ecosystem in HRB.
基金supported by the National Natural Science Foundation of China[grant number 41575092]the National Key Research and Development Program[grant number 2018YFC1506600]。
文摘To improve the understanding of the CO_(2) exchange and the cycling of energy and water between the land surface and atmosphere over a typical hilly forest in southeastern China,a long-term field experimental observatory was established in Huainan,Anhui Province.Here,the authors briefly describe the three parts of ongoing research activities:the environmental monitoring at the site,the meteorological observations on a high tower,and particularly the intensive measurement of soil-vegetation-atmosphere interaction on a lower tower.Specifically,the diurnal variation of basic meteorological variables on a typical clear day(13 July 2018),and their temporal variation in the first three months of the low tower’s operation(4 June to 31 August 2018),and in combination with simultaneous data from the high tower,are analyzed.Results show that the data demonstrate reasonable variabilities,and the variables exhibit significant diurnal variation,characteristics of summer values,and considerable differences in summer months.The daily and monthly average albedos above the forest canopy were both 0.13.The daily average soil CO_(2) concentration was 1726 and 4481 ppm at 2 and 10 cm,respectively.The soil CO_(2) concentration changed with soil volumetric moisture contents,but showed a weak correlation with soil temperature in summer 2018.As the observatory continues to run and data continue to be collated,further investigation of the long-term variation of monsoon characteristics should be performed in the future.The experiment is useful in ecosystem and atmosphere interaction research,as well as for the development and evaluation of climate models,in the transitional climate zone of the Huaihe River basin.
文摘By the daily precipitation data at 18 meteorological stations of Huaihe River basin in recent 50 years,the temporal-spatial distribution features of the rainstorm over Huaihe River basin during 1958- 2007 and its influence on agriculture production were analyzed. The results showed that the interannual change magnitudes of the rainstorm days and rainstorm amount from 1958 to 2007 were fierce. Especially in the late 1990 s,rainstorm days and rainstorm amount increased obviously. As a result of interannual variability of East Asian summer monsoon and East Asian circulation system,rainstorm had significant quasi-2-year periodic oscillation in summer. Because of water vapor and terrain,rainstorm mainly concentrated in the southwest over the Huaihe River basin,but was less in the north.
文摘Taking the rainstorm flood disaster of Huaihe River basin as the research object,according to the principles of risk assessment for natural disasters,starting from the fatalness of inducing factors and the vulnerability of hazard bearing body,the weight of each impact factor was calculated by using AHP. By using spatial analysis and statistical function of GIS,the integrated risk chart of rainstorm flood disaster in Huaihe River basin was obtained. The results showed that the high risk areas of rainstorm flood disaster in Huaihe River basin mainly distributed in the southern part of Henan,the central northern part of Anhui and eastern part of Jiangsu Province. Due to higher fatalness of inducing factors in southern Henan,there was high risk in the region. Central Anhui and east Jiangsu were not only high-fatalness zones but also high vulnerability zones of population and economy.
文摘[Objective]The research aimed to analyze formation reason of the strong squall weather in the Yellow River and Huaihe River basins on June 3,2009.[Method]Using American NCEP 1°×1° reanalysis data,observation data at automatic weather station,conventional meteorological data,FY-2C satellite cloud image and Doppler weather radar data in Shangqiu,circulation background situation of a strong squall line case on June 3,2009 in the Yellow River and Huaihe River basins was conducted diagnostic analysis.Then,formation reason of the squall weather was discussed.[Result]Increasing convective instable stratification was the favorable situation.Translot in the rear of northeast cold vortex leaded cold air to go south.The rising airflow created by ground meso-scale convergence was as trigger mechanism of the convection.Water vapor from the south continuously supplied.Finally,squall line was formed,and developed.It was a high incidence zone of the thunderstorm and squall line near dry line.[Conclusion]The research provided reference for the future similar weather forecast.
基金The work was financially supported by China Geological Survey(Grant No.DD202201756,DD20230428).
文摘Arsenic(As),fluoride(F^(−))are both ubiquitous in groundwater,and co-exposure to these elements through contaminated drinking water may cause detrimental effects on human health more in comparison with individual exposure.As,F^(−)co-occurrence in groundwater of the inland plain in Huaihe River Basin,China is a major concern,where inhabitants are rely on groundwater as the leading water source for drinking to date.This work employs an approach of hydrochemical analysis and modelling to identify the possible origin of As and F^(−),to analyze co-enrichment mechanism,and to estimate the associated exposure risk.The results shows presence of elevated As and F^(−)concentrations is an important factor affecting groundwater quality from 62 groundwater samples.The recorded As concentrations vary from 0.23 to 20.40μg/L,with a mean of 5.95μg/L,F^(−)concentrations vary from 0.54 to 2.60μg/L,with a mean of 1.29 mg/L,and 8%of samples are simultaneously above their permissible limits in drinking water by the WHO.Groundwater with As,F^(−)co-contamination is occurred within reducing and alkaline aquifers,and its chemical type is HCO_(3)–Na.The hydrochemical processes involved in the co-contamination are reductive desorption,evaporation,and ion exchange,which are controlled by local geology,geomorphology,and hydrochemistry.Groundwater As is derived and released by reductive desorption and F^(−)is mainly originated by fluorite dissolution.Groundwater As,F^(−)are geogenic sources,and the mechanisms for co-contamination are associated with high elemental abundance,flat terrain,alkaline and reductive groundwater conditions.The research provides a case study about groundwater As,F^(−)co-contamination,which may be enhance understanding the co-enrichment mechanism in semi-humid areas.
基金the National Program on Key Basic Research Project of China(973 Program,2010CB951004)the Natural Sciences Foundation of China(No.51079132)+2 种基金the Research Fund for The Doctoral Program of Higher Education of China(20094101110002)National Scientific and Technological Major Project of Water Pollution Control and Treatment of China(2009ZX07210-006)the Special Financing Research Project of Water Resources Department of China(200801001)
基金National Basic Research Program of China, No.2010CB428406 National Natural Science Foundation of China, No.41071025 The meteorological data used in this study were collected from China Meteorological Administration (CMA), which is highly appreciated.
文摘Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are analyzed. Annual maximum series (AM) and peak over threshold series (POT) are selected to simulate the probability distribution of extreme pre- cipitation. The results show that positive trend of annual maximum precipitation is detected at most of used stations, only a small number of stations are found to depict a negative trend during the past five decades, and none of the positive or negative trend is significant. The maximum precipitation event almost occurred in the flooding period during the 1960s and 1970s. By the L-moments method, the parameters of three extreme distributions, i.e., Gen- eralized extreme value distribution (GEV), Generalized Pareto distribution (GP) and Gamma distribution are estimated. From the results of goodness of fit test and Kolmogorov-Smirnov (K-S) test, AM series can be better fitted by GEV model and POT series can be better fitted by GP model. By the comparison of the precipitation amounts under different return levels, it can be found that the values obtained from POT series are a little larger than the values from AM series, and they can better simulate the observed values in the Huaihe River Basin.
基金National Natural Science Foundation of China,No.41571018
文摘This study presents a soil and water integrated model(SWIM) and associated statistical analyses for the Huaihe River Basin(HRB) based on daily meteorological, river runoff, and water resource data encompassing the period between 1959 and 2015. The aim of this research is to quantitatively analyze the rate of contribution of upstream runoff to that of the midstream as well as the influence of climate change and human activities in this section of the river. Our goal is to explain why extreme precipitation is concentrated in the upper reaches of the HRB while floods tend to occur frequently in the middle reaches of this river basin. Results show that the rate of contribution of precipitation to runoff in the upper reaches of the HRB is significantly higher than temperature. Data show that the maximum contribution rate of upstream runoff to that of the midstream can be as high as 2.23%, while the contribution of temperature is just 0.38%. In contrast, the rate of contribution of human activities to runoff is 87.20% in the middle reaches of the HRB, while that due to climate change is 12.80%. Frequent flood disasters therefore occur in the middle reaches of the HRB because of the combined effects of extreme precipitation in the upper reaches and human activities in the middle sections.
基金National Science and Technology Major Project,No.2009ZX07210-010Supported by Program B for Outstanding Ph D Candidate of Nanjing University
文摘There have been substantial conflicts in the human-water relationship in the Huaihe River Basin (HRB). To achieve sustainable economic development without degrading the water environment in the HRB, we develop a three-dimensional water environmental sup- porting capacity (WESC) model based on water environmental carrying capacity (WECC), water environmental pressure (WEP), and water pollution prevention and control capacity (WPPC). Geographic information systems spatial analysis with the analytical hierarchy process method and dynamic weighted summation is applied. Several proposals for suitable locations for industry and environmental protection strategies for water were presented. The following results were obtained. (1) The spatial differences in WECC are substantial; areas with high-value WECC zones are mainly located along the main stream of the Huaihe River on the south side. WEP is generally high, with an overall low level of pollution prevention and control in the whole HRB. WPPC and WEP show high spatial overlapping due to the fact that areas with higher environmental pollution usually have high level of economic development, and thus have a strong capacity for pollution control. (2) Overall, WESC is moderate in the HRB. In particular, areas with a high WESC value only account for 56.24% of the HRB in 2010 Distinct differences in WESC also exist between areas located in the south compared with in the north of the basin, and areas alongside the downstream region compared with alongside the upstream and midstream regions. (3) Consequently, according to the guidance for indus- try zoning in the HRB, the areas in the south and alongside the downstream and sub-streams with a low WEP value and high WECC and WPPC, traditional industries should be developed based on strict environmental access and pollution emission standards. While for the areas along the midstream of the HRB and along the whole Yishusi River Basin, which have a high WEP value, industrial restructuring and technological upgrading are suggested. Action should be taken to limit development and protect the environment in the upstream region of the basin which is a key source of drinking water, in the eastern route along the line of the South-toNorth Water Diversion Project, and in the ecologically fragile region alongside the basin. This will ensure good environmental functionality including subsistent provision of clean water, while at the same time satisfying the urgent need to adjust, transform, and upgrade the industrial structure.
基金supported by the National Basic Research Program of China (Grant No. 2013CB430105)the National Natural Science Foundation of China (Grant Nos. 40775038, 40875031 & 40975036)the Foreign Professors Projects of Chinese Academy of Sciences (Grant No. 2010-c-6)
文摘Here we present the results from the composite analyses of the atmospheric circulations and physical quantity fields associated with rainy-season for the selected floods cases over the Yangtze and Huaihe River basins for the 21 years(1990–2010),using the daily rain gauge measurements taken in the 756 stations throughout China and the NCEP/reanalysis data for the rainyseasons(June–July)from 1990 to 2010.The major differences in the atmospheric circulations and physical quantity fields between the Yangtze and Huaihe River basins are as follows:for flooding years of the Yangtze River Basin,the South Asia high center is located further east than normal,the blocking high over the Urals and the Sea of Okhotsk maintains,and the Meiyu front is situated near 30°N whereas for flooding years of the Huaihe River Basin,the South Asia high center is further west than normal,the atmospheric circulations over the mid and high latitudes in the Northern Hemisphere are of meridional distribution,and the Meiyu front is situated near 33°N.In addition,there are distinct differences in water vapor sources and associated transports between the Yangtze and Huaihe River basins.The water vapor is transported by southwesterly flows from the Bay of Bengal and monsoon flows over the South China Sea for flooding years of the Yangtze River Basin whereas by southeast monsoons from the eastern and southern seas off China and monsoon flows over the South China Sea for flooding years of the Huaihe River Basin.
文摘The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscale hydrological model for the assessment of the effects of climate change on water resources.The monthly discharge from 1953 through 1985 in the Huaihe River Basin is simulated.The sensitivity analysis on runoff is made under assumed climatic scenarios.There is a good agreement between the observed and simulated runoff.Due to the increase of time interval and decrease of precipitation intensity on monthly time scale,there is no monthly runoff in some model girds as the momhly hydrological model is applied to the Huaihe River Basin.Two methods of downscaling monthly precipitation to daily resolution are validated by running the Xin'anjiang model with monthly data at a daily time step.and the model outputs are more realistic than the monthly hydrological model.The metbods of downscaling of monthly precipitation to daily resolution may provide an idea in solving the problem of the shortage of daily data.In the research of the climate change on water resources,the daily hydrological model can be used instead of the monthly one.
基金National Key R&D Program of China,No.2021YFC3000104National Natural Science Foundation of China,No.52009081,No.51479118Special Funded Project for Basic Scientific Research Operation Expenses of the Central Public Welfare Scientific Research Institutes of China,No.Y519006。
文摘Multi-source weighted-ensemble precipitation(MSWEP)is one of the most popular merged global precipitation products with long-term spanning and high spatial resolution.While various studies have acknowledged its ability to accurately estimate precipitation in terms of temporal dynamics,its performance regarding spatial pattern and extreme rainfall is overlooked.To fill this knowledge gap,the daily precipitation of two versions of MSWEP(MSWEP V2.1&V2.2)are compared with that of three representative satellite-and reanalysis-based products,namely the Tropical Rainfall Measuring Mission(TRMM 3B42 V7),the climate prediction center morphing technique satellite-gauge merged product(CMORPH BLD),and the fifth-generation reanalysis product of the European Centre for Medium Range Weather Forecasts(ERA5).The comparison is made according to the dense daily rainfall observations from 539 rain gauges over the Huaihe River Basin in China during 2006–2015.The results show that MSWEP V2.1,MSWEP V2.2 and CMORPH BLD have better performance on temporal accuracy of precipitation estimation,followed by ERA5 and TRMM 3B42V7.MSWEPs yield the most even spatial distribution across the basin since it takes full advantage of the multi datasets.As the weighted-ensemble method is independently carried out on each grid in MSWEPs,the spatial distribution of local precipitation is changed by different source data,which results in that MSWEPs perform worse than CMORPH BLD in terms of the representation of precipitation spatial pattern.In addition,the capability of MSWEPs to describe the spatial structure in the rainy season is lower than that in the dry season.Strong precipitation(≥100 mm/d)events are better represented in TRMM 3B42 V7 products than in MSWEPs.Finally,based on the comparison results,we suggest to improve the merging algorithm of MSWEP by considering the precipitation spatial self-correlation and adjusting the merging weights based on the performance of the source datasets under different precipitation intensities.