The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of H...The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of Huaibei-Huainan coalfields and Qinshui coal basin was discussed. The burial, thermal, and maturity histories of are similar between Huaibei coalfield and Huainan coalfield, obviously different from those of Qinshui coal basin. Based on the tectono-thermal evolution characters of Huaibei-Huainan coalfields and Qinshui basin, the process of coalbed gas generation can be divided into three stages: (1) Dur- ing Early Mesozoic, both in Huaibei-Huainan and Qinshui, the buried depth of Permian coal seams increased rapidly, which resulted in strong metamorphism and high burial temperature of coal seams. At this stage, the coal rank was mainly fat coal, and locally reached coking coal. These created an environment favoring the generation of thermogenic gas. (2) From Late Ju- rassic to Cretaceous, in the areas of Huaibei-Hualnan, the strata suffered from erosion and the crust became thinning, and the Permian coal-bearing strata were uplifted to surface. At this stage, the thermogenic gas mostly escaped. Conversely, in Qinshui basin, the cover strata of coal seams kept intact during this stage, and the thermogenic gas were mostly preserved. Furthermore, with the interaction of magmatism, the burial temperature of coal seams reached higher peak value, and it was suitable for the secondary generation of thermogenic gas. (3) From Paleogene onward, in area of Huainan-Huaibei, the maturity of coal and burial temperature were propitious to the generation of secondary biogenic gases. However, in Qinshui basin, the maturity of coal went against genesis of second biogenic gas or thermogenic gas. By comparison, Huaibei-Huainan coalfields are dominated by thermogenic gas with a significant biogenic gas and hydrodynamic overprint, whereas Qinshui basin is dominated mainly by thermogenic gas.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 41030422, 40772135, 40972131, 40940014)National Basic Research Program of China (Grant No. 2009CB219601)
文摘The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of Huaibei-Huainan coalfields and Qinshui coal basin was discussed. The burial, thermal, and maturity histories of are similar between Huaibei coalfield and Huainan coalfield, obviously different from those of Qinshui coal basin. Based on the tectono-thermal evolution characters of Huaibei-Huainan coalfields and Qinshui basin, the process of coalbed gas generation can be divided into three stages: (1) Dur- ing Early Mesozoic, both in Huaibei-Huainan and Qinshui, the buried depth of Permian coal seams increased rapidly, which resulted in strong metamorphism and high burial temperature of coal seams. At this stage, the coal rank was mainly fat coal, and locally reached coking coal. These created an environment favoring the generation of thermogenic gas. (2) From Late Ju- rassic to Cretaceous, in the areas of Huaibei-Hualnan, the strata suffered from erosion and the crust became thinning, and the Permian coal-bearing strata were uplifted to surface. At this stage, the thermogenic gas mostly escaped. Conversely, in Qinshui basin, the cover strata of coal seams kept intact during this stage, and the thermogenic gas were mostly preserved. Furthermore, with the interaction of magmatism, the burial temperature of coal seams reached higher peak value, and it was suitable for the secondary generation of thermogenic gas. (3) From Paleogene onward, in area of Huainan-Huaibei, the maturity of coal and burial temperature were propitious to the generation of secondary biogenic gases. However, in Qinshui basin, the maturity of coal went against genesis of second biogenic gas or thermogenic gas. By comparison, Huaibei-Huainan coalfields are dominated by thermogenic gas with a significant biogenic gas and hydrodynamic overprint, whereas Qinshui basin is dominated mainly by thermogenic gas.