The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of...The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.展开更多
One of the main challenges for multi-wheel hub motor driven vehicles is the coordination of individual drivetrains to improve mobility and stability in the steering process.This paper proposes a dual-steering mode bas...One of the main challenges for multi-wheel hub motor driven vehicles is the coordination of individual drivetrains to improve mobility and stability in the steering process.This paper proposes a dual-steering mode based on direct yaw moment control for enhancing vehicle steering ability in complex environ ments.The control system is designed as a hierarchical structure,with a yaw moment decision layer and a driving force distribution layer.In the higher-level layer,the objective optimization function is con-structed to obtain the slip steering ratio,which represents the degree of vehicle slip steering in the dual-steering mode.Ayaw moment controller using active disturbance rejection control theory is designed for continuous yaw rate control.When the actual yaw rate of the vehicle deviates from the reference yaw rate obtained by the vehicle reference model and the slip steering ratio,the yaw moment controller isactuated to determine the yaw moment demand for vehicle steering.In the lower-level layer,there is a torque distribution controller based on distribution rules,which meets the requirement of yaw moment demand without affecting the total longitudinal driving force of the vehicle.For verifying the validity and feasibility of the dual-steering mode,simulations were conducted on the hardware-in-loop real-time simulation platfomm.Additionally,corresponding real vehicle tests were carried out on an eight-wheel prototype vehicle.Test results were generally consistent with the simulation results,thereby demon-strating that the proposed dual-steering mode reduces steering radius and enhances the steering per-formance of the vehicle.展开更多
Due to high efficiency,high controllability,high integration,lightweight,and other advantages,electric vehicle with hub motor driving technology has become an emerging trend of chassis technology.This paper concludes ...Due to high efficiency,high controllability,high integration,lightweight,and other advantages,electric vehicle with hub motor driving technology has become an emerging trend of chassis technology.This paper concludes the current state⁃of⁃the⁃art of hub motor drive technologies.Firstly,it summarizes recent hub motor drive products and makes suggestions for hub motor drive schemes in different application scenarios.Then research on hub motor drive key technologies such as integrated design,thermal optimization,lightweight,and intensity optimization is investigated.Considering the high response accuracy and zero delay characteristic of hub motor driving system combined with advanced distributed dynamics control technology that can further improve vehicle performance,this paper also analyzes existing chassis dynamics control technologies of hub motor driving system.Considering the development trend of vehicle electrification,intelligentization,network connection,and current research,this paper makes some forecasts for hub motor drive technologies development in the conclusion.展开更多
This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed...This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.展开更多
Motion analyses are performed with the help of stability and simulation analysis, which can provide theoretical bases for applications of an electric vehicle with two independent drive motors. Compared with one-motor ...Motion analyses are performed with the help of stability and simulation analysis, which can provide theoretical bases for applications of an electric vehicle with two independent drive motors. Compared with one-motor drive electric vehicle, the two-motor drive electric vehicle has the advantage of easy layout, simple power train and good drivability and handling characteristics. Analysis shows the method connecting armatures of two DC motors in parallel can function as mechanical differential without a steering sensor, which can simplify structure and increase reliability of the controller. Computer simulations and experiment are carried out to verify conclusions.展开更多
A synchronous electronic let-off and take-up device isdesigned.The device is controlled by a single-chipcomputer and driven by two step motors.It has somefunctions such as keeping the warp tension constant dur-ing the...A synchronous electronic let-off and take-up device isdesigned.The device is controlled by a single-chipcomputer and driven by two step motors.It has somefunctions such as keeping the warp tension constant dur-ing the weaving instant,releasing the warp tension whenloom is stopping and straining warp when loom is start-ing.By means of these functions,the stop mark of thewoven fabrics is eliminated.In addition,this device canapply to weaving variant-pick-density fabrics.展开更多
The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been...The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been also estimated via observations of sub-orbital tail-off events. We achieve slag initial data based on MASTER slag model and SRM historical launch data,and propagate slag long-term orbital evolution taking into account the zonal harmonics J2,atmospheric drag,solar radiation pressure and luni-solar attraction to discuss the slag size distribution and orbital characteristics. Finally,future slag debris environment is evaluated based on two different launch rate assumptions. The result shows that current launch frequency will make the slag population sustain growth and the population will not decrease at once even if there are no more launches in the future.展开更多
Since the Modbus RTU wired communication protocol of Siemens variable frequency motors is unstable and lacks a protection mechanism, there is a risk of user information leakage. Aiming at the problems of insufficient ...Since the Modbus RTU wired communication protocol of Siemens variable frequency motors is unstable and lacks a protection mechanism, there is a risk of user information leakage. Aiming at the problems of insufficient flexibility of traditional defense methods and poor defense effects, The present work proposed a new dual detection method based on MODBUS RTU, which combines the dual monitoring mechanism of “Address Resolution Protocol (ARP) request detection” and “ARP response detection”. In order to improve detection efficiency, two real-time updated linear tables are introduced, which can effectively deal with the three ARP spoofing methods of updating the ARP buffer. Based on the analysis of the hidden dangers of the Modbus RTU wired communication protocol, a wired connection between the S7-1200 PLC and the variable frequency motor was established, and a real experimental platform was constructed to demonstrate the attack. The intensity of ARP attacks has gradually increased over time. Through comparative experiments with traditional defense methods, it is proved that the algorithm enhances the protocol mechanism in principle, and is more flexible and reliable than traditional methods.展开更多
Simulink is a visual simulation tool in MATLAB;?through Simulink software,?to establish a model can reduce the amount of programming workload,?and?improve the efficiency of the establishment of automotive models.?The ...Simulink is a visual simulation tool in MATLAB;?through Simulink software,?to establish a model can reduce the amount of programming workload,?and?improve the efficiency of the establishment of automotive models.?The ride comfort of the vehicle is a measure of the most basic indicators of a car performance.?By establishing a ride comfort model in Matlab/Simulink, the wheel motor electric vehicle mainly affects the smoothness of the car mainly in the following aspects:?pavement, tire, suspension, motor and so on.?Through the establishment of the above model,?we?can effectively study the wheel motor drive electric vehicle ride comfort research.展开更多
The effect of intrathecal injection of dynorphin A (1-17) on second messenger systems of spinal cord relative to behavioral change in rats was studied. Dynorphin A (1-17) 5 ,10 (20nmol) caused dose-dependent flaccid p...The effect of intrathecal injection of dynorphin A (1-17) on second messenger systems of spinal cord relative to behavioral change in rats was studied. Dynorphin A (1-17) 5 ,10 (20nmol) caused dose-dependent flaccid paralysis of hindlimbs. Dynorphin A (1-17) 10, 20 nmol dose-dependently decreased spinal adenylate cyclase (AC) activity, cyclic AMP production, calmodulin (CaM) level and cyclic-nucleotide phosphodiesterase(PDE)activity 10 min after intrathecal injection. They recovered to a varying extent two hours later. Pretreatment with selective κ-opioid receptor antagonist nor-BNI 30 nmol 10 min before dynorphin A (1-17) markedly antagonized the effects of dynorphin A (1-17 ) at 20 nmol on hindlimb paralysis and inhibition of intracellular second messengers. The L-type calcium channel blocker verapamil (100nmol) also played a role in blocking dynorphin neurotoxicity. The NMDA receptor antagonist APV could partially or completely block dynorphin inhibition of CaM level and PDE activity without affecting paralysis and decrease of AC-cAMP level induced by dynorphin A(1-17) 10 min after intrathecal injection.展开更多
基金supported by National Science Foundation of China(Grant No.51705306).
文摘The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.
基金This work was supported by the Weapons and Equipment Pre-Research Project of China(No.301051102).
文摘One of the main challenges for multi-wheel hub motor driven vehicles is the coordination of individual drivetrains to improve mobility and stability in the steering process.This paper proposes a dual-steering mode based on direct yaw moment control for enhancing vehicle steering ability in complex environ ments.The control system is designed as a hierarchical structure,with a yaw moment decision layer and a driving force distribution layer.In the higher-level layer,the objective optimization function is con-structed to obtain the slip steering ratio,which represents the degree of vehicle slip steering in the dual-steering mode.Ayaw moment controller using active disturbance rejection control theory is designed for continuous yaw rate control.When the actual yaw rate of the vehicle deviates from the reference yaw rate obtained by the vehicle reference model and the slip steering ratio,the yaw moment controller isactuated to determine the yaw moment demand for vehicle steering.In the lower-level layer,there is a torque distribution controller based on distribution rules,which meets the requirement of yaw moment demand without affecting the total longitudinal driving force of the vehicle.For verifying the validity and feasibility of the dual-steering mode,simulations were conducted on the hardware-in-loop real-time simulation platfomm.Additionally,corresponding real vehicle tests were carried out on an eight-wheel prototype vehicle.Test results were generally consistent with the simulation results,thereby demon-strating that the proposed dual-steering mode reduces steering radius and enhances the steering per-formance of the vehicle.
文摘Due to high efficiency,high controllability,high integration,lightweight,and other advantages,electric vehicle with hub motor driving technology has become an emerging trend of chassis technology.This paper concludes the current state⁃of⁃the⁃art of hub motor drive technologies.Firstly,it summarizes recent hub motor drive products and makes suggestions for hub motor drive schemes in different application scenarios.Then research on hub motor drive key technologies such as integrated design,thermal optimization,lightweight,and intensity optimization is investigated.Considering the high response accuracy and zero delay characteristic of hub motor driving system combined with advanced distributed dynamics control technology that can further improve vehicle performance,this paper also analyzes existing chassis dynamics control technologies of hub motor driving system.Considering the development trend of vehicle electrification,intelligentization,network connection,and current research,this paper makes some forecasts for hub motor drive technologies development in the conclusion.
文摘This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.
文摘Motion analyses are performed with the help of stability and simulation analysis, which can provide theoretical bases for applications of an electric vehicle with two independent drive motors. Compared with one-motor drive electric vehicle, the two-motor drive electric vehicle has the advantage of easy layout, simple power train and good drivability and handling characteristics. Analysis shows the method connecting armatures of two DC motors in parallel can function as mechanical differential without a steering sensor, which can simplify structure and increase reliability of the controller. Computer simulations and experiment are carried out to verify conclusions.
文摘A synchronous electronic let-off and take-up device isdesigned.The device is controlled by a single-chipcomputer and driven by two step motors.It has somefunctions such as keeping the warp tension constant dur-ing the weaving instant,releasing the warp tension whenloom is stopping and straining warp when loom is start-ing.By means of these functions,the stop mark of thewoven fabrics is eliminated.In addition,this device canapply to weaving variant-pick-density fabrics.
基金Sponsored by the Space Debris Special Projects of State Administration of Science Technology and Industry for National Defense(Grant No.K020410-1/2)
文摘The resulting slag particles from solid rocket motor( SRM) firings are an important component of space debris environment. Slag sizes as large as 1 cm have been witnessed in ground tests,and comparable sizes have been also estimated via observations of sub-orbital tail-off events. We achieve slag initial data based on MASTER slag model and SRM historical launch data,and propagate slag long-term orbital evolution taking into account the zonal harmonics J2,atmospheric drag,solar radiation pressure and luni-solar attraction to discuss the slag size distribution and orbital characteristics. Finally,future slag debris environment is evaluated based on two different launch rate assumptions. The result shows that current launch frequency will make the slag population sustain growth and the population will not decrease at once even if there are no more launches in the future.
文摘Since the Modbus RTU wired communication protocol of Siemens variable frequency motors is unstable and lacks a protection mechanism, there is a risk of user information leakage. Aiming at the problems of insufficient flexibility of traditional defense methods and poor defense effects, The present work proposed a new dual detection method based on MODBUS RTU, which combines the dual monitoring mechanism of “Address Resolution Protocol (ARP) request detection” and “ARP response detection”. In order to improve detection efficiency, two real-time updated linear tables are introduced, which can effectively deal with the three ARP spoofing methods of updating the ARP buffer. Based on the analysis of the hidden dangers of the Modbus RTU wired communication protocol, a wired connection between the S7-1200 PLC and the variable frequency motor was established, and a real experimental platform was constructed to demonstrate the attack. The intensity of ARP attacks has gradually increased over time. Through comparative experiments with traditional defense methods, it is proved that the algorithm enhances the protocol mechanism in principle, and is more flexible and reliable than traditional methods.
文摘Simulink is a visual simulation tool in MATLAB;?through Simulink software,?to establish a model can reduce the amount of programming workload,?and?improve the efficiency of the establishment of automotive models.?The ride comfort of the vehicle is a measure of the most basic indicators of a car performance.?By establishing a ride comfort model in Matlab/Simulink, the wheel motor electric vehicle mainly affects the smoothness of the car mainly in the following aspects:?pavement, tire, suspension, motor and so on.?Through the establishment of the above model,?we?can effectively study the wheel motor drive electric vehicle ride comfort research.
文摘The effect of intrathecal injection of dynorphin A (1-17) on second messenger systems of spinal cord relative to behavioral change in rats was studied. Dynorphin A (1-17) 5 ,10 (20nmol) caused dose-dependent flaccid paralysis of hindlimbs. Dynorphin A (1-17) 10, 20 nmol dose-dependently decreased spinal adenylate cyclase (AC) activity, cyclic AMP production, calmodulin (CaM) level and cyclic-nucleotide phosphodiesterase(PDE)activity 10 min after intrathecal injection. They recovered to a varying extent two hours later. Pretreatment with selective κ-opioid receptor antagonist nor-BNI 30 nmol 10 min before dynorphin A (1-17) markedly antagonized the effects of dynorphin A (1-17 ) at 20 nmol on hindlimb paralysis and inhibition of intracellular second messengers. The L-type calcium channel blocker verapamil (100nmol) also played a role in blocking dynorphin neurotoxicity. The NMDA receptor antagonist APV could partially or completely block dynorphin inhibition of CaM level and PDE activity without affecting paralysis and decrease of AC-cAMP level induced by dynorphin A(1-17) 10 min after intrathecal injection.