期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于HMRF先验模型的超分辨率重建 被引量:4
1
作者 徐鹏宇 傅山 《计算机工程》 CAS CSCD 北大核心 2009年第17期213-214,216,共3页
针对基于最大后验概率(MAP)的超分辨率重建算法在重建图像过程中存在的问题,提出一种基于Huber-马尔可夫随机场(HMRF)先验模型的超分辨率重建方法,采用HMRF作为图像先验模型,对图像进行分段超分辨率重建。仿真实验结果表明,与传统的MAP... 针对基于最大后验概率(MAP)的超分辨率重建算法在重建图像过程中存在的问题,提出一种基于Huber-马尔可夫随机场(HMRF)先验模型的超分辨率重建方法,采用HMRF作为图像先验模型,对图像进行分段超分辨率重建。仿真实验结果表明,与传统的MAP算法相比,该方法能更好地保存重建图像的边缘细节,有效提高重建图像的质量。 展开更多
关键词 最大后验概率算法 超分辨率重建 Huber-马尔可夫随机场模型
下载PDF
结合高斯回归模型和隐马尔可夫随机场的模糊聚类图像分割 被引量:27
2
作者 赵雪梅 李玉 赵泉华 《电子与信息学报》 EI CSCD 北大核心 2014年第11期2730-2736,共7页
为了克服经典模糊聚类图像分割算法对图像噪声的敏感性,该文提出结合高斯回归模型(GRM)和隐马尔科夫随机场(HMRF)的模糊聚类图像分割算法。该算法用信息熵正则化模糊C均值(FCM)的目标函数,再用KL(Kullback-Leibler)信息加以改进,并将HMR... 为了克服经典模糊聚类图像分割算法对图像噪声的敏感性,该文提出结合高斯回归模型(GRM)和隐马尔科夫随机场(HMRF)的模糊聚类图像分割算法。该算法用信息熵正则化模糊C均值(FCM)的目标函数,再用KL(Kullback-Leibler)信息加以改进,并将HMRF和GRM模型应用到该目标函数中,其中HMRF模型通过先验概率建立标号场邻域关系,而GRM模型则在中心像素标号与其邻域像素标号一致的基础上建立特征场邻域关系。利用提出的算法和其它经典算法分别对模拟图像、真实SAR图像以及纹理图像进行了分割实验,并对分割结果进行精度评价。实验结果表明,该文提出的算法具有更高的分割精度。 展开更多
关键词 图像处理 图像分割 模糊聚类 隐马尔可夫随机场 高斯回归模型 KL(Kullback-Leibler)信息
下载PDF
基于多节点拓扑重叠测度高阶MRF模型的图像分割
3
作者 徐胜军 周盈希 +2 位作者 孟月波 刘光辉 史亚 《自动化学报》 EI CAS CSCD 北大核心 2022年第5期1353-1369,共17页
针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MT... 针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MTOM-HMRF)的图像分割方法.首先,为描述图像局部区域内多像素蕴含的复杂空间拓扑结构信息,利用多节点拓扑重叠测度建立图像局部区域的高阶先验模型;其次,利用较大的局部区域包含更多的标签节点信息能力,基于Pairwise MRF模型建立基于局部区域的部分二阶Potts先验模型,提高分割模型的抗噪能力;再次,为有效描述观察图像场与其标签场的似然特征分布,研究利用局部区域内邻接像素的Hamming距离引入图像局部空间相关性,建立局部空间一致性约束的高斯混合分布;最后,基于MRF框架建立用于图像分割的多节点拓扑重叠测度高阶MRF模型,采用Gibbs采样算法对提出模型进行优化.实验结果表明,提出模型不仅能有效抵抗图像强噪声和复杂的纹理突变干扰,鲁棒性更好,而且具有更准确的图像分割结果. 展开更多
关键词 图像分割 高阶马尔科夫随机场 拓扑重叠测度 高斯混合模型 Gibbs采样算法
下载PDF
基于改进模糊C均值算法的颈动脉超声图像分割 被引量:8
4
作者 李锵 张琦珺 +1 位作者 关欣 滕建辅 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2018年第1期95-102,共8页
颈动脉的内中膜厚度(IMT)是预测心血管疾病(CVDs)病发程度的重要指标.本文研究并提出一种自动、高效的计算机辅助IMT测量算法,该算法依据先验知识自动提取感兴趣区域(ROI),并采用基于隐马尔可夫随机场(HMRF)模型改进的模糊C均值(FCM)算... 颈动脉的内中膜厚度(IMT)是预测心血管疾病(CVDs)病发程度的重要指标.本文研究并提出一种自动、高效的计算机辅助IMT测量算法,该算法依据先验知识自动提取感兴趣区域(ROI),并采用基于隐马尔可夫随机场(HMRF)模型改进的模糊C均值(FCM)算法分割图像,实现IMT的自动测量.实验结果表明,所提算法对超声图像噪声的鲁棒性较强,IMT自动测量结果与真实值(GT)有很高的一致性:两个数据集合的相关系数为98.52%,平均绝对误差为0.022 0?0.016 4 mm. 展开更多
关键词 超声图像分割 内中膜厚度测量 模糊C均值 隐马尔可夫随机场模型 感兴趣区域
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部