Melanins represent one of the most ancient and important group of natural macromolecular pigments.They have multiple biological roles in almost all organisms across the Phyla,examples being photoprotection,anti-oxidat...Melanins represent one of the most ancient and important group of natural macromolecular pigments.They have multiple biological roles in almost all organisms across the Phyla,examples being photoprotection,anti-oxidative action,radical scavenger activity,and heavy metal removal.From the biomedical point of view,melanocytes are involved in the origin of melanoma tumors,and the main therapeutic advances for their treatment have been revised in Part 1 of this review.The chemical structure of eumelanin is a biological concern of great importance,and therefore,exploring theoretical molecular models and synthesis mechanisms will be here described,as well as molecular orbital features and supramolecular organization,which are responsible for the key properties that make these biological pigments so important,and so fascinating.Ultimately,this updated overview is devoted to describe present structural models and physico-chemical characteristics of eumelanin,in order to explain and utilize melanin properties on which new photothermal and ultrasonic protocols for melanoma treatment can be devised and applied.展开更多
The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures o...The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.展开更多
The central importance of quantum chemistry is to obtain solutions of the Schr?dinger equation for the accurate determination of the properties of atomic and molecular systems that occurred from the calculation of wav...The central importance of quantum chemistry is to obtain solutions of the Schr?dinger equation for the accurate determination of the properties of atomic and molecular systems that occurred from the calculation of wave functions accurate for many diatomic and polyatomic molecules, using Self Consistent Field method (SCF). The application of quantum chemical methods in the study and planning of bioactive compounds has become a common practice nowadays. From the point of view of planning it is important to note, when it comes to the use of molecular modeling, a collective term that refers to methods and theoretical modeling and computational techniques to mimic the behavior of molecules, not intend to reach a bioactive molecule simply through the use of computer programs. The choice of method for energy minimization depends on factors related to the size of the molecule, parameters of availability, stored data and computational resources. Molecular models generated by the computer are the result of mathematical equations that estimate the positions and properties of the electrons and nuclei, the calculations exploit experimentally, the characteristics of a structure, providing a new perspective on the molecule. In this work we show that studies of Highest Occupied Molecular Orbital Energy (HOMO), Low Unoccupied Molecular Orbital Energy (LUMO) and Map of molecular electrostatic potential (MEP) using Hatree-Fock method with different basis sets (HF/3-21G*, HF/3-21G**, HF/6-31G, HF/6-31G*, HF/6-31G** and HF/6-311G), that are of great importance in modern chemistry, biochemistry, molecular biology, and other fields of knowledge of health sciences. In order to obtain a significant correlation, it is essential that the descriptors are used appropriately. Thus, the quantum chemical calculations are an attractive source of new molecular descriptors that can, in principle, express all the geometrical and electronic properties of molecules and their interactions with biological receptor.展开更多
The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organ...The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organic species and stability of inorganic clusters.Thus,the observation of unique species featuring properties out of the fundamental frameworks of these rules is challenging but significant and helps in drawing a complete picture of fascinating concepts in chemistry.展开更多
Within the framework of nuclear molecular orbital model,the semi-micro-scopic description of the gross resonant structure of <sup>16</sup>O+<sup>16</sup>O system is given.The pre-sent result is...Within the framework of nuclear molecular orbital model,the semi-micro-scopic description of the gross resonant structure of <sup>16</sup>O+<sup>16</sup>O system is given.The pre-sent result is comparable to other theoretical results which are in agreement with the ex-isting experimental data.展开更多
To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since ...To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since HATCN molecule can withdraw electrons, it can alter electronic properties of the electrodes and hence inserted between the organic/metal interfaces. This paper deals with the optimization of the thickness of organic-metal layers to enhance the efficiency. Also, efforts have been made to increase the current density and reduce the operating voltage of the device. The material 2, 7-bis [N, N-bis (4- methoxy-phenyl) amino]-9, 9-spirobifluorene (Meo-Spiro-TPD) is used to simulate the hole only device because it is a thermally stable hole transport material. Simulated results shows that better current density values can be achieved compared to fabricated one by optimizing the organic metal layer thickness. The best optimized layer thickness of 22 nm for Alq3, 25 nm for *CBP doped with Ir(ppy)3, 9 nm for Meo-Spiro TPD and 4 nm for HAT-CN which results in current density of 0.12 A/cm2 with a reduction in operating voltage by approximately 2 V.展开更多
文摘Melanins represent one of the most ancient and important group of natural macromolecular pigments.They have multiple biological roles in almost all organisms across the Phyla,examples being photoprotection,anti-oxidative action,radical scavenger activity,and heavy metal removal.From the biomedical point of view,melanocytes are involved in the origin of melanoma tumors,and the main therapeutic advances for their treatment have been revised in Part 1 of this review.The chemical structure of eumelanin is a biological concern of great importance,and therefore,exploring theoretical molecular models and synthesis mechanisms will be here described,as well as molecular orbital features and supramolecular organization,which are responsible for the key properties that make these biological pigments so important,and so fascinating.Ultimately,this updated overview is devoted to describe present structural models and physico-chemical characteristics of eumelanin,in order to explain and utilize melanin properties on which new photothermal and ultrasonic protocols for melanoma treatment can be devised and applied.
文摘The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.
文摘The central importance of quantum chemistry is to obtain solutions of the Schr?dinger equation for the accurate determination of the properties of atomic and molecular systems that occurred from the calculation of wave functions accurate for many diatomic and polyatomic molecules, using Self Consistent Field method (SCF). The application of quantum chemical methods in the study and planning of bioactive compounds has become a common practice nowadays. From the point of view of planning it is important to note, when it comes to the use of molecular modeling, a collective term that refers to methods and theoretical modeling and computational techniques to mimic the behavior of molecules, not intend to reach a bioactive molecule simply through the use of computer programs. The choice of method for energy minimization depends on factors related to the size of the molecule, parameters of availability, stored data and computational resources. Molecular models generated by the computer are the result of mathematical equations that estimate the positions and properties of the electrons and nuclei, the calculations exploit experimentally, the characteristics of a structure, providing a new perspective on the molecule. In this work we show that studies of Highest Occupied Molecular Orbital Energy (HOMO), Low Unoccupied Molecular Orbital Energy (LUMO) and Map of molecular electrostatic potential (MEP) using Hatree-Fock method with different basis sets (HF/3-21G*, HF/3-21G**, HF/6-31G, HF/6-31G*, HF/6-31G** and HF/6-311G), that are of great importance in modern chemistry, biochemistry, molecular biology, and other fields of knowledge of health sciences. In order to obtain a significant correlation, it is essential that the descriptors are used appropriately. Thus, the quantum chemical calculations are an attractive source of new molecular descriptors that can, in principle, express all the geometrical and electronic properties of molecules and their interactions with biological receptor.
基金supported by the Taishan Scholars Project of Shandong Province(no.ts201712011)the National Natural Science Foundation of China(NSFC)(nos.21603119 and 21705093)+4 种基金the Natural Science Foundation of Shandong Province(nos.ZR2017BB061 and ZR2016BQ09)the Natural Science Foundation of Jiangsu Province(no.BK20170396)the Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(no.2019KJC025)the Young Scholars Program of Shandong University(YSPSDU)(no.2018WLJH48)the Qilu Youth Scholar Funding of Shandong University,and the Fundamental Research Funds of Shandong University(no.2017TB003).
文摘The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organic species and stability of inorganic clusters.Thus,the observation of unique species featuring properties out of the fundamental frameworks of these rules is challenging but significant and helps in drawing a complete picture of fascinating concepts in chemistry.
基金The project supported by National Natural Science Foundation of China.
文摘Within the framework of nuclear molecular orbital model,the semi-micro-scopic description of the gross resonant structure of <sup>16</sup>O+<sup>16</sup>O system is given.The pre-sent result is comparable to other theoretical results which are in agreement with the ex-isting experimental data.
文摘To increase the current density of the hole only device, 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) material has been inserted in the device at the indium tin oxide (ITO)/organic interface. Since HATCN molecule can withdraw electrons, it can alter electronic properties of the electrodes and hence inserted between the organic/metal interfaces. This paper deals with the optimization of the thickness of organic-metal layers to enhance the efficiency. Also, efforts have been made to increase the current density and reduce the operating voltage of the device. The material 2, 7-bis [N, N-bis (4- methoxy-phenyl) amino]-9, 9-spirobifluorene (Meo-Spiro-TPD) is used to simulate the hole only device because it is a thermally stable hole transport material. Simulated results shows that better current density values can be achieved compared to fabricated one by optimizing the organic metal layer thickness. The best optimized layer thickness of 22 nm for Alq3, 25 nm for *CBP doped with Ir(ppy)3, 9 nm for Meo-Spiro TPD and 4 nm for HAT-CN which results in current density of 0.12 A/cm2 with a reduction in operating voltage by approximately 2 V.