In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data...Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy.展开更多
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov...Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.展开更多
Introduction Egypt is a Low-Middle Income Country(LMIC)with a population of 106,472,382 people in August 2022(Worldometers&Department of Economic and Social Affairs,2022).Available evidence suggests that there are...Introduction Egypt is a Low-Middle Income Country(LMIC)with a population of 106,472,382 people in August 2022(Worldometers&Department of Economic and Social Affairs,2022).Available evidence suggests that there are misuse/overuse of antibiotic in Egypt[1].On recognizing the global threat of antibiotic resistance(AMR),Egypt launched the National Action Plan(NAP)in 2018.This comprehensive plan,inspired by the Global Action Plan(GAP),united diverse stakeholders like ministries,universities,and international organizations.The NAP tackled AMR through four key strategies:boosting public understanding of antibiotics,optimizing their use across humans and animals,embracing a“One Health”approach,and implementing effective infection prevention practices[2].展开更多
To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at var...The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at various stages of development and deployment to assist patients and endoscopists in preparing for endoscopic procedures,in detection,diagnosis and classification of pathology during endoscopy and in confirmation of key performance indicators.Platforms based on ML and CNNs require regulatory approval as medical devices.Interactions between humans and the technologies we use are complex and are influenced by design,behavioural and psychological elements.Due to the substantial differences between AI and prior technologies,important differences may be expected in how we interact with advice from AI technologies.Human-AI interaction(HAII)may be optimised by developing AI algorithms to minimise false positives and designing platform interfaces to maximise usability.Human factors influencing HAII may include automation bias,alarm fatigue,algorithm aversion,learning effect and deskilling.Each of these areas merits further study in the specific setting of AI applications in GI endoscopy and professional societies should engage to ensure that sufficient emphasis is placed on human-centred design in development of new AI technologies.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Objective:To implement humanized quality care in critical respiratory failure nursing,observe the effect,and analyze the satisfaction.Methods:80 patients with severe respiratory failure were divided into 40 cases per ...Objective:To implement humanized quality care in critical respiratory failure nursing,observe the effect,and analyze the satisfaction.Methods:80 patients with severe respiratory failure were divided into 40 cases per group(admitted from February 2022 to December 2023)by double-blind method,the control group performed routine care,and the observation group was given humanized quality care.Results:After the nursing care,two respiratory function indexes of the observation group were lower than those of the control group,and two pulmonary function indexes were higher than those of the control group(P<0.05);regarding the complication situation,the incidence rate of the observation group was lower(P<0.05);regarding the nursing care satisfaction situation,the observation group had a higher level of total satisfaction(P<0.05).Conclusion:The application of a humanized quality nursing intervention model in the care of critical respiratory failure can actively improve patients’respiratory status and lung function,reduce complications,and satisfy patients.展开更多
Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanism...Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanisms of vegetation ecosystem in different historical periods.Therefore,it is urgent to identify and reveal the dominant factors and their contribution rates in the vegetation change cycle.Based on the data of climate elements(sunshine hours,precipitation and temperature),human activities(population intensity and GDP intensity)and other natural factors(altitude,slope and aspect),this study explored the spatial and temporal evolution patterns of vegetation NDVI in the Yellow River Basin of China from 1989 to 2019 through a residual method,a trend analysis,and a gravity center model,and quantitatively distinguished the relative actions of climate change and human activities on vegetation evolution based on Geodetector model.The results showed that the spatial distribution of vegetation NDVI in the Yellow River Basin showed a decreasing trend from southeast to northwest.During 1981-2019,the temporal variation of vegetation NDVI showed an overall increasing trend.The gravity centers of average vegetation NDVI during the study period was distributed in Zhenyuan County,Gansu Province,and the center moved northeastwards from 1981 to 2019.During 1981-2000 and 2001-2019,the proportion of vegetation restoration areas promoted by the combined action of climate change and human activities was the largest.During the study period(1981-2019),the dominant factors influencing vegetation NDVI shifted from natural factors to human activities.These results could provide decision support for the protection and restoration of vegetation ecosystem in the Yellow River Basin.展开更多
Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,p...Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,person tracking,and video surveillance.Machine Learning(ML)approaches,specifically,Convolutional Neural Network(CNN)models had beenwidely used and achieved impressive results through feature fusion.The accuracy and effectiveness of these models continue to be the biggest challenge in this field.In this article,a novel feature optimization algorithm,called improved Shark Smell Optimization(iSSO)is proposed to reduce the redundancy of extracted features.This proposed technique is inspired by the behavior ofwhite sharks,and howthey find the best prey in thewhole search space.The proposed iSSOalgorithmdivides the FeatureVector(FV)into subparts,where a search is conducted to find optimal local features fromeach subpart of FV.Once local optimal features are selected,a global search is conducted to further optimize these features.The proposed iSSO algorithm is employed on nine(9)selected CNN models.These CNN models are selected based on their top-1 and top-5 accuracy in ImageNet competition.To evaluate the model,two publicly available datasets UCF-Sports and Hollywood2 are selected.展开更多
Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the ...Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the interest in research in this field is evolving,such as understanding of actions and scenes,studying human joints,and human posture recognition.Many HAR techniques are introduced in the literature.Nonetheless,the challenge of redundant and irrelevant features reduces recognition accuracy.They also faced a few other challenges,such as differing perspectives,environmental conditions,and temporal variations,among others.In this work,a deep learning and improved whale optimization algorithm based framework is proposed for HAR.The proposed framework consists of a few core stages i.e.,frames initial preprocessing,fine-tuned pre-trained deep learning models through transfer learning(TL),features fusion using modified serial based approach,and improved whale optimization based best features selection for final classification.Two pre-trained deep learning models such as InceptionV3 and Resnet101 are fine-tuned and TL is employed to train on action recognition datasets.The fusion process increases the length of feature vectors;therefore,improved whale optimization algorithm is proposed and selects the best features.The best selected features are finally classified usingmachine learning(ML)classifiers.Four publicly accessible datasets such as Ut-interaction,Hollywood,Free Viewpoint Action Recognition usingMotion History Volumes(IXMAS),and centre of computer vision(UCF)Sports,are employed and achieved the testing accuracy of 100%,99.9%,99.1%,and 100%respectively.Comparison with state of the art techniques(SOTA),the proposed method showed the improved accuracy.展开更多
The development of artificial intelligence(AI)and smart home technologies has driven the need for speech recognition-based solutions.This demand stems from the quest for more intuitive and natural interaction between ...The development of artificial intelligence(AI)and smart home technologies has driven the need for speech recognition-based solutions.This demand stems from the quest for more intuitive and natural interaction between users and smart devices in their homes.Speech recognition allows users to control devices and perform everyday actions through spoken commands,eliminating the need for physical interfaces or touch screens and enabling specific tasks such as turning on or off the light,heating,or lowering the blinds.The purpose of this study is to develop a speech-based classification model for recognizing human actions in the smart home.It seeks to demonstrate the effectiveness and feasibility of using machine learning techniques in predicting categories,subcategories,and actions from sentences.A dataset labeled with relevant information about categories,subcategories,and actions related to human actions in the smart home is used.The methodology uses machine learning techniques implemented in Python,extracting features using CountVectorizer to convert sentences into numerical representations.The results show that the classification model is able to accurately predict categories,subcategories,and actions based on sentences,with 82.99%accuracy for category,76.19%accuracy for subcategory,and 90.28%accuracy for action.The study concludes that using machine learning techniques is effective for recognizing and classifying human actions in the smart home,supporting its feasibility in various scenarios and opening new possibilities for advanced natural language processing systems in the field of AI and smart homes.展开更多
Artificial intelligence is increasingly being applied in the field of video analysis,particularly in the area of public safety where video surveillance equipment such as closed-circuit television(CCTV)is used and auto...Artificial intelligence is increasingly being applied in the field of video analysis,particularly in the area of public safety where video surveillance equipment such as closed-circuit television(CCTV)is used and automated analysis of video information is required.However,various issues such as data size limitations and low processing speeds make real-time extraction of video data challenging.Video analysis technology applies object classification,detection,and relationship analysis to continuous 2D frame data,and the various meanings within the video are thus analyzed based on the extracted basic data.Motion recognition is key in this analysis.Motion recognition is a challenging field that analyzes human body movements,requiring the interpretation of complex movements of human joints and the relationships between various objects.The deep learning-based human skeleton detection algorithm is a representative motion recognition algorithm.Recently,motion analysis models such as the SlowFast network algorithm,have also been developed with excellent performance.However,these models do not operate properly in most wide-angle video environments outdoors,displaying low response speed,as expected from motion classification extraction in environments associated with high-resolution images.The proposed method achieves high level of extraction and accuracy by improving SlowFast’s input data preprocessing and data structure methods.The input data are preprocessed through object tracking and background removal using YOLO and DeepSORT.A higher performance than that of a single model is achieved by improving the existing SlowFast’s data structure into a frame unit structure.Based on the confusion matrix,accuracies of 70.16%and 70.74%were obtained for the existing SlowFast and proposed model,respectively,indicating a 0.58%increase in accuracy.Comparing detection,based on behavioral classification,the existing SlowFast detected 2,341,164 cases,whereas the proposed model detected 3,119,323 cases,which is an increase of 33.23%.展开更多
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.展开更多
Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables dom...Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion.展开更多
Human action recognition(HAR)attempts to understand a subject’sbehavior and assign a label to each action performed.It is more appealingbecause it has a wide range of applications in computer vision,such asvideo surv...Human action recognition(HAR)attempts to understand a subject’sbehavior and assign a label to each action performed.It is more appealingbecause it has a wide range of applications in computer vision,such asvideo surveillance and smart cities.Many attempts have been made in theliterature to develop an effective and robust framework for HAR.Still,theprocess remains difficult and may result in reduced accuracy due to severalchallenges,such as similarity among actions,extraction of essential features,and reduction of irrelevant features.In this work,we proposed an end-toendframework using deep learning and an improved tree seed optimizationalgorithm for accurate HAR.The proposed design consists of a fewsignificantsteps.In the first step,frame preprocessing is performed.In the second step,two pre-trained deep learning models are fine-tuned and trained throughdeep transfer learning using preprocessed video frames.In the next step,deeplearning features of both fine-tuned models are fused using a new ParallelStandard Deviation Padding Max Value approach.The fused features arefurther optimized using an improved tree seed algorithm,and select the bestfeatures are finally classified by using the machine learning classifiers.Theexperiment was carried out on five publicly available datasets,including UTInteraction,Weizmann,KTH,Hollywood,and IXAMS,and achieved higheraccuracy than previous techniques.展开更多
Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has at...Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset.展开更多
Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogene...Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemis...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.展开更多
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
基金the National Natural Science Foundation of China under Grant No.62072255.
文摘Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)and the Soonchunhyang University Research Fund.
文摘Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.
文摘Introduction Egypt is a Low-Middle Income Country(LMIC)with a population of 106,472,382 people in August 2022(Worldometers&Department of Economic and Social Affairs,2022).Available evidence suggests that there are misuse/overuse of antibiotic in Egypt[1].On recognizing the global threat of antibiotic resistance(AMR),Egypt launched the National Action Plan(NAP)in 2018.This comprehensive plan,inspired by the Global Action Plan(GAP),united diverse stakeholders like ministries,universities,and international organizations.The NAP tackled AMR through four key strategies:boosting public understanding of antibiotics,optimizing their use across humans and animals,embracing a“One Health”approach,and implementing effective infection prevention practices[2].
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
文摘The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at various stages of development and deployment to assist patients and endoscopists in preparing for endoscopic procedures,in detection,diagnosis and classification of pathology during endoscopy and in confirmation of key performance indicators.Platforms based on ML and CNNs require regulatory approval as medical devices.Interactions between humans and the technologies we use are complex and are influenced by design,behavioural and psychological elements.Due to the substantial differences between AI and prior technologies,important differences may be expected in how we interact with advice from AI technologies.Human-AI interaction(HAII)may be optimised by developing AI algorithms to minimise false positives and designing platform interfaces to maximise usability.Human factors influencing HAII may include automation bias,alarm fatigue,algorithm aversion,learning effect and deskilling.Each of these areas merits further study in the specific setting of AI applications in GI endoscopy and professional societies should engage to ensure that sufficient emphasis is placed on human-centred design in development of new AI technologies.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
文摘Objective:To implement humanized quality care in critical respiratory failure nursing,observe the effect,and analyze the satisfaction.Methods:80 patients with severe respiratory failure were divided into 40 cases per group(admitted from February 2022 to December 2023)by double-blind method,the control group performed routine care,and the observation group was given humanized quality care.Results:After the nursing care,two respiratory function indexes of the observation group were lower than those of the control group,and two pulmonary function indexes were higher than those of the control group(P<0.05);regarding the complication situation,the incidence rate of the observation group was lower(P<0.05);regarding the nursing care satisfaction situation,the observation group had a higher level of total satisfaction(P<0.05).Conclusion:The application of a humanized quality nursing intervention model in the care of critical respiratory failure can actively improve patients’respiratory status and lung function,reduce complications,and satisfy patients.
基金This work was supported by grants from the National Natural Science Foundation of China(42101306,4217107)the Natural Science Foundation of Shandong Province(ZR2021MD047),the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA2002040203)+2 种基金the Open Fund of the Key Laboratory of National Geographic Census and Monitoring,Ministry of Natural Resources(MNR)(2020NGCM02)the Open Fund of the Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(KF-2020-05-001)the Major Project of the High Resolution Earth Observation System of China(GFZX0404130304).
文摘Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanisms of vegetation ecosystem in different historical periods.Therefore,it is urgent to identify and reveal the dominant factors and their contribution rates in the vegetation change cycle.Based on the data of climate elements(sunshine hours,precipitation and temperature),human activities(population intensity and GDP intensity)and other natural factors(altitude,slope and aspect),this study explored the spatial and temporal evolution patterns of vegetation NDVI in the Yellow River Basin of China from 1989 to 2019 through a residual method,a trend analysis,and a gravity center model,and quantitatively distinguished the relative actions of climate change and human activities on vegetation evolution based on Geodetector model.The results showed that the spatial distribution of vegetation NDVI in the Yellow River Basin showed a decreasing trend from southeast to northwest.During 1981-2019,the temporal variation of vegetation NDVI showed an overall increasing trend.The gravity centers of average vegetation NDVI during the study period was distributed in Zhenyuan County,Gansu Province,and the center moved northeastwards from 1981 to 2019.During 1981-2000 and 2001-2019,the proportion of vegetation restoration areas promoted by the combined action of climate change and human activities was the largest.During the study period(1981-2019),the dominant factors influencing vegetation NDVI shifted from natural factors to human activities.These results could provide decision support for the protection and restoration of vegetation ecosystem in the Yellow River Basin.
基金supported by the Collabo R&D between Industry,Academy,and Research Institute(S3250534)funded by the Ministry of SMEs and Startups(MSS,Korea)the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,person tracking,and video surveillance.Machine Learning(ML)approaches,specifically,Convolutional Neural Network(CNN)models had beenwidely used and achieved impressive results through feature fusion.The accuracy and effectiveness of these models continue to be the biggest challenge in this field.In this article,a novel feature optimization algorithm,called improved Shark Smell Optimization(iSSO)is proposed to reduce the redundancy of extracted features.This proposed technique is inspired by the behavior ofwhite sharks,and howthey find the best prey in thewhole search space.The proposed iSSOalgorithmdivides the FeatureVector(FV)into subparts,where a search is conducted to find optimal local features fromeach subpart of FV.Once local optimal features are selected,a global search is conducted to further optimize these features.The proposed iSSO algorithm is employed on nine(9)selected CNN models.These CNN models are selected based on their top-1 and top-5 accuracy in ImageNet competition.To evaluate the model,two publicly available datasets UCF-Sports and Hollywood2 are selected.
基金This research work is supported in part by Chiang Mai University and HITEC University.
文摘Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the interest in research in this field is evolving,such as understanding of actions and scenes,studying human joints,and human posture recognition.Many HAR techniques are introduced in the literature.Nonetheless,the challenge of redundant and irrelevant features reduces recognition accuracy.They also faced a few other challenges,such as differing perspectives,environmental conditions,and temporal variations,among others.In this work,a deep learning and improved whale optimization algorithm based framework is proposed for HAR.The proposed framework consists of a few core stages i.e.,frames initial preprocessing,fine-tuned pre-trained deep learning models through transfer learning(TL),features fusion using modified serial based approach,and improved whale optimization based best features selection for final classification.Two pre-trained deep learning models such as InceptionV3 and Resnet101 are fine-tuned and TL is employed to train on action recognition datasets.The fusion process increases the length of feature vectors;therefore,improved whale optimization algorithm is proposed and selects the best features.The best selected features are finally classified usingmachine learning(ML)classifiers.Four publicly accessible datasets such as Ut-interaction,Hollywood,Free Viewpoint Action Recognition usingMotion History Volumes(IXMAS),and centre of computer vision(UCF)Sports,are employed and achieved the testing accuracy of 100%,99.9%,99.1%,and 100%respectively.Comparison with state of the art techniques(SOTA),the proposed method showed the improved accuracy.
基金supported by Generalitat Valenciana with HAAS(CIAICO/2021/039)the Spanish Ministry of Science and Innovation under the Project AVANTIA PID2020-114480RB-I00.
文摘The development of artificial intelligence(AI)and smart home technologies has driven the need for speech recognition-based solutions.This demand stems from the quest for more intuitive and natural interaction between users and smart devices in their homes.Speech recognition allows users to control devices and perform everyday actions through spoken commands,eliminating the need for physical interfaces or touch screens and enabling specific tasks such as turning on or off the light,heating,or lowering the blinds.The purpose of this study is to develop a speech-based classification model for recognizing human actions in the smart home.It seeks to demonstrate the effectiveness and feasibility of using machine learning techniques in predicting categories,subcategories,and actions from sentences.A dataset labeled with relevant information about categories,subcategories,and actions related to human actions in the smart home is used.The methodology uses machine learning techniques implemented in Python,extracting features using CountVectorizer to convert sentences into numerical representations.The results show that the classification model is able to accurately predict categories,subcategories,and actions based on sentences,with 82.99%accuracy for category,76.19%accuracy for subcategory,and 90.28%accuracy for action.The study concludes that using machine learning techniques is effective for recognizing and classifying human actions in the smart home,supporting its feasibility in various scenarios and opening new possibilities for advanced natural language processing systems in the field of AI and smart homes.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03040583)supported by Kyonggi University’s Graduate Research Assistantship 2023.
文摘Artificial intelligence is increasingly being applied in the field of video analysis,particularly in the area of public safety where video surveillance equipment such as closed-circuit television(CCTV)is used and automated analysis of video information is required.However,various issues such as data size limitations and low processing speeds make real-time extraction of video data challenging.Video analysis technology applies object classification,detection,and relationship analysis to continuous 2D frame data,and the various meanings within the video are thus analyzed based on the extracted basic data.Motion recognition is key in this analysis.Motion recognition is a challenging field that analyzes human body movements,requiring the interpretation of complex movements of human joints and the relationships between various objects.The deep learning-based human skeleton detection algorithm is a representative motion recognition algorithm.Recently,motion analysis models such as the SlowFast network algorithm,have also been developed with excellent performance.However,these models do not operate properly in most wide-angle video environments outdoors,displaying low response speed,as expected from motion classification extraction in environments associated with high-resolution images.The proposed method achieves high level of extraction and accuracy by improving SlowFast’s input data preprocessing and data structure methods.The input data are preprocessed through object tracking and background removal using YOLO and DeepSORT.A higher performance than that of a single model is achieved by improving the existing SlowFast’s data structure into a frame unit structure.Based on the confusion matrix,accuracies of 70.16%and 70.74%were obtained for the existing SlowFast and proposed model,respectively,indicating a 0.58%increase in accuracy.Comparing detection,based on behavioral classification,the existing SlowFast detected 2,341,164 cases,whereas the proposed model detected 3,119,323 cases,which is an increase of 33.23%.
文摘Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.
基金Supported by the National Natural Science Foundation of China (62202346)Hubei Key Research and Development Program (2021BAA042)+3 种基金Open project of Engineering Research Center of Hubei Province for Clothing Information (2022HBCI01)Wuhan Applied Basic Frontier Research Project (2022013988065212)MIIT′s AI Industry Innovation Task Unveils Flagship Projects (Key Technologies,Equipment,and Systems for Flexible Customized and Intelligent Manufacturing in the Clothing Industry)Hubei Science and Technology Project of Safe Production Special Fund (Scene Control Platform Based on Proprioception Information Computing of Artificial Intelligence)。
文摘Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion.
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
文摘Human action recognition(HAR)attempts to understand a subject’sbehavior and assign a label to each action performed.It is more appealingbecause it has a wide range of applications in computer vision,such asvideo surveillance and smart cities.Many attempts have been made in theliterature to develop an effective and robust framework for HAR.Still,theprocess remains difficult and may result in reduced accuracy due to severalchallenges,such as similarity among actions,extraction of essential features,and reduction of irrelevant features.In this work,we proposed an end-toendframework using deep learning and an improved tree seed optimizationalgorithm for accurate HAR.The proposed design consists of a fewsignificantsteps.In the first step,frame preprocessing is performed.In the second step,two pre-trained deep learning models are fine-tuned and trained throughdeep transfer learning using preprocessed video frames.In the next step,deeplearning features of both fine-tuned models are fused using a new ParallelStandard Deviation Padding Max Value approach.The fused features arefurther optimized using an improved tree seed algorithm,and select the bestfeatures are finally classified by using the machine learning classifiers.Theexperiment was carried out on five publicly available datasets,including UTInteraction,Weizmann,KTH,Hollywood,and IXAMS,and achieved higheraccuracy than previous techniques.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)This work has also been supported by PrincessNourah bint Abdulrahman UniversityResearchers Supporting Project Number(PNURSP2022R239),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Alsothis work was partially supported by the Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset.
基金the National Natural Science Foundation of China,No.82360148Guizhou Science&Technology Department,No.QKHPTRC2018-5636-2 and No.QKHPTRC2020-2201.
文摘Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.
基金the Suzhou Medical Center,No.Szlcyxzx202103the National Natural Science Foundation of China,No.82171828+9 种基金the Key R&D Plan of Jiangsu Province(Social Development),No.BE2021652the Subject Construction Support Project of The Second Affiliated Hospital of Soochow University,No.XKTJHRC20210011Wu Jieping Medical Foundation,No.320.6750.2021-01-12the Special Project of“Technological Innovation”Project of CNNC Medical Industry Co.Ltd,No.ZHYLTD2021001Suzhou Science and Education Health Project,No.KJXW2021018Foundation of Chinese Society of Clinical Oncology,No.Y-pierrefabre202102-0113Beijing Bethune Charitable Foundation,No.STLKY0016Research Projects of China Baoyuan Investment Co.,No.270004Suzhou Gusu Health Talent Program,No.GSWS2022028Open Project of State Key Laboratory of Radiation Medicine and Protection of Soochow University,No.GZN1202302.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.