Objective:To determine the anti-proliferative activity of Abrus precatorius(A.precatorius)leaf extracts and their effect on cell death.Methods:A.precatorius leaves were extracted successively with hexane,ethyl acetate...Objective:To determine the anti-proliferative activity of Abrus precatorius(A.precatorius)leaf extracts and their effect on cell death.Methods:A.precatorius leaves were extracted successively with hexane,ethyl acetate and methanol by Soxhlet extraction.Aqueous extract was prepared by decoction at 50 ℃.Extracts of A.precatorius leaves were used to treat selected cancer and normal cell lines for72 h.Furthermore,3-(4,5-dimethyl thiazol-2-yl)2,5-diphenyl tetrazolium bromide assay was performed to determine cell viability.Analysis of cell cycle arrest,apoptosis assay and apoptosis protein expressions were determined by flow cytometry.Results:Methanolic extract of A.precatorius leaves showed the lowest IC50 on MDA-MB-231 cells at(26.40±5.40)μg/mL.Flow cytometry analysis revealed that cell arrest occurred at G0/G1 phase and the apoptosis assay showed the occurrence of early apoptosis at 48 h in MDAMB-231 cells treated with methanolic extract of A.precatorius leaves.Methanolic extract of A.precatorius leaves induced apoptosis by upregulation of Bax,p53 and caspase-3 and downregulation of Bcl-2.Conclusions:Methanolic extract of A precatorius leaves promotes MDA-MB-231 cell death by inducing cell cycle arrest and apoptosis possibly via the mitochondrial-related pathway.展开更多
ObjectiveTo investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines.MethodsIn vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231)...ObjectiveTo investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines.MethodsIn vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates.ResultsOf the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82) μg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 μg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (?7.6 kkal/mol).ConclusionsThe actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines.展开更多
OBJECTIVE To evaluate the effect of Guizhi Fuling Capsule active pharmaceutical ingredient(API)and its fractions on human breast cancer cells proliferation by high-throughput screening assay.METHODS The crude fraction...OBJECTIVE To evaluate the effect of Guizhi Fuling Capsule active pharmaceutical ingredient(API)and its fractions on human breast cancer cells proliferation by high-throughput screening assay.METHODS The crude fractions were obtained from the extraction and elution of the API of Guizhi Fuling Capsule,and 929 standard fractions were obtained by the optimal separation conditions.Sulforhodamine B(SRB)method was used to evaluate the effects of the Guizhi Fuling capsule API and929 kinds of fractions on the proliferation of human breast cancer cells MCF-7 and MDA-MB-231.RESULTS The Guizhi Fuling capsule API had a strong ability to inhibit the proliferation of MCF-7 cells at high concentration and the ability to inhibit MDA-MB-231 cells' proliferate at low concentration following 72 h treatment;some samples of 929 fractions(5μg·mL^(-1))was found to have a breast cancer cell growth inhibition rate above 50%,without toxicity on HUVECs proliferation.CONCLUSION The API of Guizhi Fuling capsule had significant cytotoxicity effects on these two human breast cancer cells,with significant concentration-and time-dependent manner.展开更多
Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihyd...Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.展开更多
Synthetic phosphoethanolamine(Pho-s)is a monophosphoester ester with anti-inflammatory and pro-apoptotic properties.Meclizine chloridrate(MC)is a histamine H1 receptor blocker that is also able to inhibit cellular res...Synthetic phosphoethanolamine(Pho-s)is a monophosphoester ester with anti-inflammatory and pro-apoptotic properties.Meclizine chloridrate(MC)is a histamine H1 receptor blocker that is also able to inhibit cellular respiration.However,MC does not inhibit cellular respiration in isolated mitochondria such as antimycin and rotenone.Methyl-β-cyclodextrin(MβCD)belongs to theβ-cyclodextrin family,which is capable of removing cholesterol from the plasma membrane.The aim of this study was to evaluate the proliferative effects of meclizine chloridrate and methyl-β-cyclodextrin compounds associated with synthetic phosphoethanolamine in a triple-negative human breast tumor line,MDA-MB-231 Cell viability of the tumor line and normal cells FN1 was evaluated by MTT colorimetric test;the production of free radicals was determined by lipoperoxidation(LPO)test;and the percentage of cell cycle phases and proliferative index was evaluated by flow cytometry.Cell viability demonstrated a significant decrease with the treatments of MβCD,MC and Pho-s associated with MC.The production of free radicals decreases significantly in all treatments.In addition,a significant increase of DNA fragment and decrease in G0/G1 cell cycle phase were observed in cellular percentage with concentrations of 20 and 30 mM of Pho-s in association with MC and MβCD,respectively.展开更多
Tamoxifen citrate (TAM) has been used to treat breast cancer in women for many years. The com-parative effects of TAM in inducing apoptosis were evaluated in estrogen receptor-positive (ER- positive MCF-7) and estroge...Tamoxifen citrate (TAM) has been used to treat breast cancer in women for many years. The com-parative effects of TAM in inducing apoptosis were evaluated in estrogen receptor-positive (ER- positive MCF-7) and estrogen receptor-negative (ER-negative MDA-MB-231) human breast cancer cell lines in vitro in order to determine if these two cell lines differ in their sensitivity to TAM. Mi-tochondrial membrane permeability potential disruption was assessed in both cell lines by a lip-ophilic cationic dye (DePsipher assay, Trevigen, Inc.) utilizing fluorescence microscopy. Using this specific fluorochrome, we were able to associate mitochondrial membrane disruption to early, mid-, and late apoptotic cells. TAM induced cell death via apoptosis in both ER-positive and ER- negative cells, however, apoptosis induction was more pronounced in ER-positive MCF-7 compared to ER-negative MDA-MB-231 breast cancer cells. These findings may have some therapeutic use in the treatment of estrogen dependent and estrogen independent breast cancer.展开更多
基金funded by the Universiti Sains Malaysia Short Term Grant(304/PPSP/61313046)
文摘Objective:To determine the anti-proliferative activity of Abrus precatorius(A.precatorius)leaf extracts and their effect on cell death.Methods:A.precatorius leaves were extracted successively with hexane,ethyl acetate and methanol by Soxhlet extraction.Aqueous extract was prepared by decoction at 50 ℃.Extracts of A.precatorius leaves were used to treat selected cancer and normal cell lines for72 h.Furthermore,3-(4,5-dimethyl thiazol-2-yl)2,5-diphenyl tetrazolium bromide assay was performed to determine cell viability.Analysis of cell cycle arrest,apoptosis assay and apoptosis protein expressions were determined by flow cytometry.Results:Methanolic extract of A.precatorius leaves showed the lowest IC50 on MDA-MB-231 cells at(26.40±5.40)μg/mL.Flow cytometry analysis revealed that cell arrest occurred at G0/G1 phase and the apoptosis assay showed the occurrence of early apoptosis at 48 h in MDAMB-231 cells treated with methanolic extract of A.precatorius leaves.Methanolic extract of A.precatorius leaves induced apoptosis by upregulation of Bax,p53 and caspase-3 and downregulation of Bcl-2.Conclusions:Methanolic extract of A precatorius leaves promotes MDA-MB-231 cell death by inducing cell cycle arrest and apoptosis possibly via the mitochondrial-related pathway.
基金supported by Indian Council of Medical Research,New Delhi(grant No.59/6/200/BMS/TRM)
文摘ObjectiveTo investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines.MethodsIn vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates.ResultsOf the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82) μg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 μg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (?7.6 kkal/mol).ConclusionsThe actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines.
基金supported by National Science and Technology Major Projects of China(2013ZX09402203,2013ZX09508104)Medical and Health Science and Technology Innovation Engineering of Chinese Academy of Medical Sciences(2016-I2M-3-007)National Natural Science Foundation of China(81573454)
文摘OBJECTIVE To evaluate the effect of Guizhi Fuling Capsule active pharmaceutical ingredient(API)and its fractions on human breast cancer cells proliferation by high-throughput screening assay.METHODS The crude fractions were obtained from the extraction and elution of the API of Guizhi Fuling Capsule,and 929 standard fractions were obtained by the optimal separation conditions.Sulforhodamine B(SRB)method was used to evaluate the effects of the Guizhi Fuling capsule API and929 kinds of fractions on the proliferation of human breast cancer cells MCF-7 and MDA-MB-231.RESULTS The Guizhi Fuling capsule API had a strong ability to inhibit the proliferation of MCF-7 cells at high concentration and the ability to inhibit MDA-MB-231 cells' proliferate at low concentration following 72 h treatment;some samples of 929 fractions(5μg·mL^(-1))was found to have a breast cancer cell growth inhibition rate above 50%,without toxicity on HUVECs proliferation.CONCLUSION The API of Guizhi Fuling capsule had significant cytotoxicity effects on these two human breast cancer cells,with significant concentration-and time-dependent manner.
基金supported by Cancer Institute NSW CDF fellowship (YZ)Cure Cancer Foundation of Australia (YZ)+3 种基金Cancer Council New South Wales (MJS, YZ, HZ, and CRD)Prostate Cancer Foundation of Australia (MJS, YZ, HZ, and CRD)NH and MRC Early Career Fellowship 596870 (YZ)German Research Foundation HO 5109/2-1 and HO 5109/2-2 (KH)
文摘Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.
文摘Synthetic phosphoethanolamine(Pho-s)is a monophosphoester ester with anti-inflammatory and pro-apoptotic properties.Meclizine chloridrate(MC)is a histamine H1 receptor blocker that is also able to inhibit cellular respiration.However,MC does not inhibit cellular respiration in isolated mitochondria such as antimycin and rotenone.Methyl-β-cyclodextrin(MβCD)belongs to theβ-cyclodextrin family,which is capable of removing cholesterol from the plasma membrane.The aim of this study was to evaluate the proliferative effects of meclizine chloridrate and methyl-β-cyclodextrin compounds associated with synthetic phosphoethanolamine in a triple-negative human breast tumor line,MDA-MB-231 Cell viability of the tumor line and normal cells FN1 was evaluated by MTT colorimetric test;the production of free radicals was determined by lipoperoxidation(LPO)test;and the percentage of cell cycle phases and proliferative index was evaluated by flow cytometry.Cell viability demonstrated a significant decrease with the treatments of MβCD,MC and Pho-s associated with MC.The production of free radicals decreases significantly in all treatments.In addition,a significant increase of DNA fragment and decrease in G0/G1 cell cycle phase were observed in cellular percentage with concentrations of 20 and 30 mM of Pho-s in association with MC and MβCD,respectively.
文摘Tamoxifen citrate (TAM) has been used to treat breast cancer in women for many years. The com-parative effects of TAM in inducing apoptosis were evaluated in estrogen receptor-positive (ER- positive MCF-7) and estrogen receptor-negative (ER-negative MDA-MB-231) human breast cancer cell lines in vitro in order to determine if these two cell lines differ in their sensitivity to TAM. Mi-tochondrial membrane permeability potential disruption was assessed in both cell lines by a lip-ophilic cationic dye (DePsipher assay, Trevigen, Inc.) utilizing fluorescence microscopy. Using this specific fluorochrome, we were able to associate mitochondrial membrane disruption to early, mid-, and late apoptotic cells. TAM induced cell death via apoptosis in both ER-positive and ER- negative cells, however, apoptosis induction was more pronounced in ER-positive MCF-7 compared to ER-negative MDA-MB-231 breast cancer cells. These findings may have some therapeutic use in the treatment of estrogen dependent and estrogen independent breast cancer.