Ro-Ro vessels for cargo and passengers (RoPax) are a relatively new concept that has proven to be popular in the Mediterranean region and is becoming more widespread in Northern Europe. Due to its design characteris...Ro-Ro vessels for cargo and passengers (RoPax) are a relatively new concept that has proven to be popular in the Mediterranean region and is becoming more widespread in Northern Europe. Due to its design characteristics and amount of passengers, although less than a regular passenger liner, accidents with RoPax vessels have far reaching consequences both for economical and for human life. The objective of this paper is to identify hazards related to casualties of RoPax vessels. The terminal casualty events chosen are related to accident and incident statistics for this type of vessel. This paper focuses on the identification of the basic events that can lead to an accident and the performance requirements. The hazard identification is carried out as the first step of a Formal Safety Assessment (FSA) and the modelling of the relation between the relevant events is made using Fault Tree Analysis (FTA). The conclusions of this study are recommendations to the later steps of FSA rather than for decision making (Step 5 of FSA). These recommendations will be focused on the possible design shortcomings identified during the analysis by fault trees throughout cut sets. Also the role that human factors have is analysed through a sensitivity analysis where it is shown that their influence is higher for groundings and collisions where an increase of the initial probability leads to the change of almost 90% of the accident occurrence.展开更多
为提升商用车的行驶安全性,本文基于触摸屏式新型人机交互系统,对商用车电控空气悬架(electronically controlled air suspension,ECAS)系统的故障诊断系统进行研究。针对ECAS故障诊断系统总体架构,提出了ECAS故障诊断及故障保护机制,...为提升商用车的行驶安全性,本文基于触摸屏式新型人机交互系统,对商用车电控空气悬架(electronically controlled air suspension,ECAS)系统的故障诊断系统进行研究。针对ECAS故障诊断系统总体架构,提出了ECAS故障诊断及故障保护机制,阐述了典型ECAS故障实例的诊断策略,并采用Matlab/Simulink搭建了诊断策略模型和故障码生成模型。为验证本文所提出的故障诊断及故障保护机制的可行性与实用性,以ECAS系统中压力传感器为例,对模型进行仿真分析和硬件在环试验。试验结果表明,在典型压力传感器故障工况下,本文所提出的ECAS故障诊断及故障保护机制,能够准确检测出相应故障,正确输出一系列相关信号,并在人机交互系统上将诊断结果进行实时显示。该研究对商用车ECAS人机交互系统的故障诊断系统设计开发具有一定的参考价值。展开更多
文摘Ro-Ro vessels for cargo and passengers (RoPax) are a relatively new concept that has proven to be popular in the Mediterranean region and is becoming more widespread in Northern Europe. Due to its design characteristics and amount of passengers, although less than a regular passenger liner, accidents with RoPax vessels have far reaching consequences both for economical and for human life. The objective of this paper is to identify hazards related to casualties of RoPax vessels. The terminal casualty events chosen are related to accident and incident statistics for this type of vessel. This paper focuses on the identification of the basic events that can lead to an accident and the performance requirements. The hazard identification is carried out as the first step of a Formal Safety Assessment (FSA) and the modelling of the relation between the relevant events is made using Fault Tree Analysis (FTA). The conclusions of this study are recommendations to the later steps of FSA rather than for decision making (Step 5 of FSA). These recommendations will be focused on the possible design shortcomings identified during the analysis by fault trees throughout cut sets. Also the role that human factors have is analysed through a sensitivity analysis where it is shown that their influence is higher for groundings and collisions where an increase of the initial probability leads to the change of almost 90% of the accident occurrence.
文摘为提升商用车的行驶安全性,本文基于触摸屏式新型人机交互系统,对商用车电控空气悬架(electronically controlled air suspension,ECAS)系统的故障诊断系统进行研究。针对ECAS故障诊断系统总体架构,提出了ECAS故障诊断及故障保护机制,阐述了典型ECAS故障实例的诊断策略,并采用Matlab/Simulink搭建了诊断策略模型和故障码生成模型。为验证本文所提出的故障诊断及故障保护机制的可行性与实用性,以ECAS系统中压力传感器为例,对模型进行仿真分析和硬件在环试验。试验结果表明,在典型压力传感器故障工况下,本文所提出的ECAS故障诊断及故障保护机制,能够准确检测出相应故障,正确输出一系列相关信号,并在人机交互系统上将诊断结果进行实时显示。该研究对商用车ECAS人机交互系统的故障诊断系统设计开发具有一定的参考价值。