AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing end...AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.展开更多
The apoptosis of lens epithehal cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal ...The apoptosis of lens epithehal cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50 μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H202 for 18 h, a high fraction of riLE cells underwent apoptosis, while in the presence ofparthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H202 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation ofcaspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation ofcaspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.展开更多
AIM: To investigate the role of micro RNA-34a(mi R-34a) in the induction of apoptosis of human lens epithelial(HLE-B3) cells. METHODS: The apoptosis of HLE-B3 cells was detected by Annexin V-PE apoptosis detecti...AIM: To investigate the role of micro RNA-34a(mi R-34a) in the induction of apoptosis of human lens epithelial(HLE-B3) cells. METHODS: The apoptosis of HLE-B3 cells was detected by Annexin V-PE apoptosis detection kit after the treatment with 200 μmol/L H2O2 for 24h and lentiviral mi R-34 a vector transfection. The expression of mi R-34 a in the cells was quantified by quantitative real time polymerase chain reaction(q RT-PCR) in response to H2O2 exposure and the vector transfection. The effects of overexpression of mi R-34 a on the expression of B-cell lymphoma-2(Bcl-2) and silent information regulator 1(SIRT1) was determined by q RT-PCR and Western blot. RESULTS: The expression of mi R-34 a was up-regulated by the treatment of H2O2 in HLE-B3 cells. The increased expression of mi R-34 a is accompanied with the cell apoptosis. Consistence with the H2O2 exposure,ectopic overexpression of mi R-34 a in HLE-B3 cells promoted cells apoptosis. Importantly the anti-apoptosis factors Bcl-2 and SIRT1 were reduced significantly by up-regulation of mi R-34 a in HLE-B3 cells.CONCLUSION: Mi R-34 a promotes the apoptosis of HLE-B3 cells by down-regulating Bcl-2 and SIRT1,suggesting that mi R-34 a may involve in the pathogenesis of cataract formation and targeting mi R-34 a may be a potentially therapeutic approach for treatment of cataract.展开更多
AIM: To study the potential role of fasudil as a treatment for posterior capsular opacification(PCO) of the human crystalline lens.METHODS: Human lens epithelial cells(HLECs; line SRA01/04) was exposed to transf...AIM: To study the potential role of fasudil as a treatment for posterior capsular opacification(PCO) of the human crystalline lens.METHODS: Human lens epithelial cells(HLECs; line SRA01/04) was exposed to transforming growth factor-β2(TGF-β2) to induce the process of epithelial-mesenchymal transition(EMT). Fasudil was applied to the cell samples. Its effect on overall HLECs proliferation and migration was studied, as was its influence on EMT induction by TGF-β2 using cell migration assay, MTT colorimetric assay and Western blot assay.RESULTS: Fasudil inhibited the proliferation of SRA01/04. Its effect was time-and concentration-dependent. The migration of SRA01/04 cells was significantly reduced 24-72 h after fasudil treatment, and the half maximal inhibitory concentration(IC50) was 22.37 μmol/mL at 72 h. Reversal of the elongated, fibroblast-like shape changes induced by TGF-β2 in SRA01/04 cells was observed. Fasudil up-regulated the expression of Connexin43 protein and down-regulated the expression of α-SMA protein compared with the cells treated with TGF-β2. Furthermore, when exposed to fasudil, the phosphorylation of Rhoassociated protein kinase(Rock) and myosin light chain(MLC) could not be activated in the cell preparations.CONCLUSION: Fasudil suppresses the proliferation and migration of SRA01/04 cells, and inhibits the process of EMT induced by TGF-β2. These results suggest that fasudil may serve as a therapeutic agent for PCO.展开更多
The effects of sodium salicylate on the expression of heat shock protein 27 (HSP27) during oxidative stress in tissue-cultured human lens epithelial cells were investigated. Cultured human lens epithelial cells (HL...The effects of sodium salicylate on the expression of heat shock protein 27 (HSP27) during oxidative stress in tissue-cultured human lens epithelial cells were investigated. Cultured human lens epithelial cells (HLB-3) were divided into 3 groups: control group (group A), oxidation injury group (group B) and sodium salicylate group (group C). Apoptosis of human lens epithelial cells cultured in vitro was induced in the presence of 150 μmol/L H2O2. Cells viability and the expression of HSP27 were analyzed. Viability of the cells was measured by methyl thiazole tetrazolium (MTT) chromatometry. The expression of HSP27 in HLB-3 cells was detected by using immunohistochemistry and image analysis system, Sodium salicylate could induce the expression of HSP27, and the cells viability in group C was significantly higher than in group B (0.2667±0.01414 vs 0.2150±0.01080, P=0.012〈0.05). The average gray value of HSP27 in group B was less than that in group C (P=0.000〈0.05). The increased expression of HSP27 by sodium salicylate might play an important role in the protection of hydrogen peroxide-induced injury of human lens epithelial cells, suggesting that sodium salicylate could suppress, at least in part, the apoptosis of human lens epithelial cells.展开更多
The effects of rapamycin on the expression of Bcl-2 and Bax protein in in vitro cultured human lens epithelial cells(LECs) and cell cycle were investigated in order to provide the theoretical basis for the developme...The effects of rapamycin on the expression of Bcl-2 and Bax protein in in vitro cultured human lens epithelial cells(LECs) and cell cycle were investigated in order to provide the theoretical basis for the development of new inhibitory drugs for clinical prevention and treatment of after-cataract.The cultured LECs of second and third passages were collected and treated with rapamycin.The LECs were transferred into 96-well culture plates and divided into 6 groups,and each group was set to have 8 duplicate wells.In the negative control group,the LECs were given culture medium only,and in the blank control group,only culture medium was given.In the four rapamycin-treated groups,different concentrations(20,40,60 and 80 ng/mL) of rapamycin were given.After treatment for 24,48 and 72 h,the absorbance(A) values in each well were determined by MTT assay.The cell cycles of all groups were detected by using flow cytometry.Real-time fluorescent quantitative polymerase chain reaction(RFQ-PCR) and Western blot were used to detect the mRNA and protein expression of Bcl-2 and Bax respectively.MTT assay showed that rapamycin could inhibit proliferation of LECs in a time-and dose-dependent manner.Flow cytometry revealed that rapamycin could block the conversion of LECs from G1 phase to S phase,resulting in the increase of cells in G1 phase and the decrease of the cells in S phase.RFQ-PCR indicated that rapamycin could down-regulate the expression of Bcl-2 mRNA,but up-regulate the expression of Bax mRNA,suggesting it could induce apoptosis of LECs.Western blot demonstrated that rapamycin could suppress the expression of Bcl-2 protein,but promote the expression of Bax protein.It is concluded that rapamycin could inhibit proliferation of LECs probably not only by blocking the progression of cell cycle,but also by promoting the induction of apoptosis.展开更多
AIM:To Investigate the effects of transforming growth factorβ2(TGF-β2)and connective tissue growth factor(CTGF)on transdifferentiation of human lens epithelial cells(HLECs)cultured in vitro and synthesis of extracel...AIM:To Investigate the effects of transforming growth factorβ2(TGF-β2)and connective tissue growth factor(CTGF)on transdifferentiation of human lens epithelial cells(HLECs)cultured in vitro and synthesis of extracellular matrix(ECM).METHODS:HLECs were treated with TGF-β2(0,0.5,1.0,5,10μg/L)and CTGF(0,15,30,60,100μg/L)for different times(0,24,48,72h)in vitro and the expression ofα-smooth muscle actin(α-SMA),the main component of the extracellular matrix typeⅠcollagen(Col-1)and fibronectin(Fn)were measured by using real-time polymerase chain reaction(PCR)and western-blot.RESULTS:TGF-β2 and CTGF significantly increased expression ofα-SMA mRNA and protein(P【0.05,P【0.001),Fn mRNA and protein(P【0.001),Col-1 mRNA and protein(P【0.001).TGF-β2 could induce HLECs expression of CTGF mRNA and protein in dosedependent manner(P【0.05,P【0.001).TGF-β2 and CTGF could induce HLECs to expressα-SMA,Fn and Col-1 in time-dependent manner.Each time of TGF-β2and CTGF induced HELCs expression ofα-SMA,Fn,Col-1 mRNA and protein was significant increase compared with control(P【0.05,P【0.001).CONCLUSION:TGF-β2 and CTGF could induce HLECs epithelial mesenchymal transition and ECM synthesis.展开更多
AIM:To investigate the effects of lentivirus(LV)mediated integrin-linked kinase(ILK)RNA interference(RNAi)on biological behaviors of human lens epithelial cells(LECs).·METHODS:Human cataract LECs and im...AIM:To investigate the effects of lentivirus(LV)mediated integrin-linked kinase(ILK)RNA interference(RNAi)on biological behaviors of human lens epithelial cells(LECs).·METHODS:Human cataract LECs and immortalized human LEC line,human lens epithelial(HLE)B-3 cells were transfected by lentiviral vector expressing ILKspecific short hairpin RNA(sh RNA)and then stimulated by transforming growth factor-β(TGF-β),the silencing of ILK gene and protein was identified by reverse transcription-polymerase chain reaction(RT-PCR)and Western blot methods;biological behaviors including cell cycle and apoptosis,cell morphology,α-smooth muscle actin(SMA)stress fiber formation and cell migration were examined.·RESULTS:Remarkable decreases of ILK protein expression were detected in LECs carrying lentiviral ILK-sh RNA vector;flow cytometry revealed arresting of cell cycle progression through the G1/S transition and higher apoptosis rate in ILK-RNAi-LV transfected cells.Lessα-SMA stress fiber formation and migration was observed in ILK-RNAi-LV transfected LECs.·CONCLUSION:The present study demonstrated that ILK was an important regulator for LECs proliferation and migration.LV mediated ILK RNAi is an effective way todecrease ILK-regulated cell growth by arresting cell cycle progression and increasing cell apoptosis,as well as,to prevent cell migration by inhibiting TGF-βinducedα-SMA stress fiber formation.Thus,LV mediated ILK RNAi might be useful to prevent posterior capsular opacification.展开更多
The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. ...The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. HLECs-B3 were incubated in the fresh media containing sodium salicylate at different concentrations for different durations, and allowed to be recovered in fresh medium without sodium salicylate for different durations with or without pretreatment with p38MAPK inhibitor (SB203580), ERK1/2 inhibitor (PD98059) and JNK/SAPK inhibitor (SP600125). The expression of P38MAPK, ERK1/2, JNK/SAPK, phosphorylated P38MAPK, phosphorylated ERK1/2, phosphorylated JNK/SAPK and HSP27 was detected by Western blot. The expression of HSP27 mRNA and protein was detected by RT-PCR and immunohistochemistry respectively. It was found there was only weak expression of HSP27 in normal HLECs. The expression of HSP27 was not detectable in HLECs-B3 that were exposed to sodium salicylate (55 retool/L) for 1-5 h. It was indicated that recovery from sodium salicylate (〉35 mmol/L) significantly increased the synthesis of HSP27. The expression of HSP27 was up-regulated in HLECs-B3 under sodium salicylate recovery for 3 h, reached the peak level for 6 h, and returned to the level of control cells by 24 h. Activation of P38MAPK from sodium salicylate stimulation occurred at 30th rain, and increased significantly at 1st h, then declined and renamed to baseline level at 3rd h under sodium salicylate recovery. Activation of ERK1/2 occurred at 1st h and reached the peak level at 6th h under sodium salicylate recovery. However, JNK/SAPK was inactivated by sodium salicylate. The expression of HSP27 could be down-regulated with the pretreatment of SB203580 and PD98059 jointly. It is concluded that sodium salicylate can induce the expression of HSP27 in HLECs-B3. The effects are mediated, at least in part, through the activation of P38MAPK and ERK1/2 signaling pathway.展开更多
The effects of NO-Fluvastatin on proliferation of human lens epithelial cells (HLECs) and the action mechanism were investigated. Cell proliferation was assessed by MTT assay. Cell cycle was analyzed by flow cytomet...The effects of NO-Fluvastatin on proliferation of human lens epithelial cells (HLECs) and the action mechanism were investigated. Cell proliferation was assessed by MTT assay. Cell cycle was analyzed by flow cytometry. The expression of cell cycle regulatory proteins CyclinE mRNA and P21waf1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). MTT staining colorimetry showed that HLECs proliferation was markedly inhibited by NO-Fluvastatin and the effect was dependently related to time (24, 48 and 72 h) and dosage (1, 5 and 20 μmol/L). Flow cytometry revealed that NO-Fluvastatin could significantly block HLECs in the G0/G1 phase, resulting in the increased cells in the G0/G1 phase and decreased in the S phase (P〈0.05). RT-PCR showed that NO-Fluvastatin could obviously inhibit the CyclinE mRNA expression and induce the P21waf1 mRNA expression as compared with the negative control groups (P〈0.05). This experiment suggested that NO-Fluvastatin could suppress the proliferation of HLECs by regulating cell cycle regulatory proteins (inhibiting the expression of CyclinE mRNA and inducing the expression of P21waf1 mRNA), resulting in the arrest of HLECs in the G0/G1 phase, which can offer theory basis for NO-Fluvastatin in treating posterior capsular opacification in clinic practice.展开更多
AIM: To study the effect of senescence marker protein 30(SMP30) on the proliferation and apoptosis of human lens epithelial cell(HLEC) SRA01/04.METHODS: SMP30 overexpression(OE) and knock down(KD) type cell ...AIM: To study the effect of senescence marker protein 30(SMP30) on the proliferation and apoptosis of human lens epithelial cell(HLEC) SRA01/04.METHODS: SMP30 overexpression(OE) and knock down(KD) type cell lines were cultivated by using two groups regucalcin(RGN; SMP30) lentiviral vectors(LVRGN, LV-RGN-RNAi) and the respective negative control virus infect SRA01/04 cells. Western blot and real-time quantitative polymerase chain reaction(q-PCR) analysis were used to determine RGN overexpression and knock down efficiency. We use cell counting kit-8(CCK8) assay to measure cell viability and 5-bromodeoxyuridine(Brd U) assay to test cell proliferation. Cell cycle was measured by PI FACS assay and cell apoptosis was tested by Annexin V-APC assay through flow cytometry. We use Western blot to measure the content of caspase-3 in SRA01/04.RESULTS: We used PCR and Western blot techniques to determine the successful transfection of SMP30 OE and KD SRA01/04 cell lines. By CCK8, Brdu and PI FACS cell cycle assay, it was found that the SMP30 OE group promoted cell proliferation(P〈0.05) compared with the control group, and the KD group inhibited cell proliferation(P〈0.05). The results of Annexin V-APC signal staining detection indicated that compared with respective control group, the cell apoptosis rate was higher in KD group(P〈0.05) but lower in OE group(P〈0.01). The expression of caspase-3 was down-regulated in OE group through Western blot assay and up-regulated in KD group compared with respective control group. CONCLUSION: Proliferation of SRA01/04 was promoted by SMP30 OE and apoptosis was suppressed. Increasing the expression of SMP30 may protect HLEC SRA01/04 against apoptosis in cataract.展开更多
AIM: To explore the effect of parthenolide on hydrogen peroxide(H_2O_2)-induced apoptosis in human lens epithelial(HLE) cells. METHODS: The morphology and number of apoptotic HLE cells were assessed using light ...AIM: To explore the effect of parthenolide on hydrogen peroxide(H_2O_2)-induced apoptosis in human lens epithelial(HLE) cells. METHODS: The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS: Apoptosis of HLE cells was induced by 200 μmol/L H_2O_2, and the viability of these cells was similar to the half maximal inhibitory concentration(IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations(6.25, 12.5, 25 and 50 mol/L) of parthenolide along with 200 μmol/L H_2O_2 or only 50 μmol/L parthenolide or 200 mol/L H_2O_2 for 24 h. Following treatment with higher concentrations of parthenolide(50 μmol/L), fewer HLE cells underwent H_2O_2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB(NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase(MAPK) family], and Akt proteins in HLE cells. CONCLUSION: Parthenolide may suppress H_2O_2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling.展开更多
AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after t...AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after transforming growth factorβ2(TGF-β2)induction.Apoptosis of HLECs after H_(2)O_(2) and TGF-β2 interference with or without ROS scavenger N-acetylcysteine(NAC)were assessed by flow cytometry.The corresponding protein expression levels of the EMT markerα-smooth muscle actin(α-SMA),the extracellular matrix(ECM),marker fibronectin(Fn),and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger(NAC).Wound-healing and Transwell assays were used to assess the migration capability of HLECs.RESULTS:TGF-β2 stimulates ROS production within 8h in HLECs.Additionally,TGF-β2 induced HLECs cell apoptosis,EMT/ECM synthesis protein markers expression,and pro-apoptotic proteins production;nonetheless,NAC treatment prevented these responses.Similarly,TGF-β2 promoted HLECs cell migration,whereas NAC inhibited cell migration.We further determined that although ROS initiated apoptosis,it only induced the accumulation of the EMT markerα-SMA protein,but not COL-1 or Fn.CONCLUSION:ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs;however,ROS alone are not sufficient for EMT/ECM synthesis.展开更多
AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made b...AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made by melt emulsification method. The morphology, particle size(PS), zeta potentials(ZP), encapsulation efficiency(EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier(NLC), genistein(Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8(CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction(RT-q PCR) and immunofluorescence analyses.·RESULTS: The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was-7.14 ±0.38 m V and the EE of Gen in the nanoparticles was 92.3% ±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72 h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The m RNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group.·CONCLUSION: Sustained drug release by Gen-NLCs may impede HLEC growth.展开更多
AIM: To study the differences of fibroblast growth factor receptor 1 (FGFR1) gene on human lens epithelial cells (HLECs) of adults and fetuses. METHODS: Indirect in situ RT-PCR was adopted for detection of FGFR1 gene....AIM: To study the differences of fibroblast growth factor receptor 1 (FGFR1) gene on human lens epithelial cells (HLECs) of adults and fetuses. METHODS: Indirect in situ RT-PCR was adopted for detection of FGFR1 gene. The cDNA of the nnRNA in the paraffin sections of fetus and adult HLEC was synthesized by reverse transcription reaction. After PCR amplification, in situ hybridization test was performed with synthesized oligonucleotide probe and relative quantification was carried out using image analysis. RESULTS: HLECs of adults and fetuses expressed FGFR1 gene, the expression level was higher in fetuses than in adults. The difference between them had significance (P<0.05). CONCLUSION: FGFR1 Exist in HLEC and the expression is age-related, which could be one of causes of the high occurrence of post operational after-cataract in children.展开更多
AIM:To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide(LBP-Se NPs)on the proliferation of human lens epithelial cells(HLECs)from UV irradiation.METHODS:LB...AIM:To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide(LBP-Se NPs)on the proliferation of human lens epithelial cells(HLECs)from UV irradiation.METHODS:LBP-Se NPs were prepared and their particle size was detected.HLECs(SRA01/04)were irradiated with UVB for different time(0,10,20,30,40,50,60 min)to construct a damaged model,the survival rate of cells was determined by methylthiazol tetrazolium(MTT)assay.The 4’,6-Diamidine-2’-phenylindole dihydrochloride(DAPI)staining was used to observe the status of cell nucleus and drug entering cytoplasm through cell membrane in SRA01/04 cells after adding LBP-SENPS loaded with coumarin fluorescence agent 24 h under fluorescence microscope.SRA01/04 normal and UVB-damaged cells were treated with different amounts of LBP-Se NPs at different concentrations,cells proliferation were observed.RESULTS:The particle size of LBP-Se NPs was stable in the range of 150-200 nm.The survival rate changes with time after UVB irradiation were statistically significant.The 10 min of UVB exposure as the time was chosen to construct the cell damage model.With DAPI staining,LBPSe NPs were observed to enter the cytoplasm through the cell membrane under fluorescence inverted microscope.Cytotoxicity of SRA01/04 at different concentrations of LBPSe NPs were measured.Cell survival rate was statistically different compared with the control group.The higher the loading concentration of LBP in nano-Se drugs was,the higher the cell proliferation rate was(P<0.05).The lower the concentration of LBP-Se NPs,the higher the cell proliferation rate,showing a negative growth trend(P<0.05).The group with the highest average cell proliferation rate was 0.5μmol/L 2.0 mg/m L LBP-Se NPs(128.80%).When the 2.0 mg/m L LBP-Se NPs group was selected for cell photography,the cell density was higher at 0.5μmol/L.With the increase of concentration,SRA01/04 cells appeared more cytoplasm dehydration,cell shrinkage and apoptotic bodies,and cell density decreased.CONCLUSION:LBP-Se NPs has moderate particle size and good stability.LBP-Se NPs can protect HLECs(SRA01/04)from UVB-induced damage,and the cell proliferation rate is further increased with increasing the amount of loaded LBP and decreasing nano-selenium concentration.展开更多
AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs w...AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis.RESULTSHLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01).CONCLUSIONTranscription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.展开更多
AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CC...AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CCK-8)and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays were used to assess HLEC viability.HLEC viability/death was detected using a Calcein-AM/PI double staining kit;the annexin V-FITC method was used to detect HLEC apoptosis.The cytosolic reactive oxygen species(ROS)levels in HLECs were determined using a reactive species assay kit.The levels of malondialdehyde(MDA)and the antioxidant activities of total-superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)were assessed in HLECs using their respective kits.RT-q PCR and Western blotting were used to measure m RNA and protein expression levels of the genes.RESULTS:Aluas RNA rescued methylglyoxal-induced apoptosis in HLECs and ameliorated both the methylglyoxalinduced decrease in Bcl-2 m RNA and the methylglyoxalinduced increase in Bax m RNA.In addition,Aluas RNA inhibited the methylglyoxal-induced increase in Alu sense RNA expression.Aluas RNA inhibited the production of ROS induced by methylglyoxal,restored T-SOD and GSHPx activity,and moderated the increase in MDA content after treatment with methylglyoxal.Aluas RNA significantly restored the methylglyoxal-induced down-regulation of Nrf2 gene and antioxidant defense genes,including glutathione peroxidase,heme oxygenase 1,γ-glutamylcysteine synthetase and quinone oxidoreductase 1.Aluas RNA ameliorated methylglyoxal-induced increases of the m RNA and protein expression of Keap1 that is the negative regulator of Nrf2.CONCLUSION:Aluas RNA reduces apoptosis induced by methylglyoxal by enhancing antioxidant defense.展开更多
AIM: To study the effect of discoidin I-like domaincontaining protein 3(EDIL3) depletion on the proliferation and epithelial-mesenchymal transition(EMT) in human lens epithelial cells(LECs). METHODS: RNA inter...AIM: To study the effect of discoidin I-like domaincontaining protein 3(EDIL3) depletion on the proliferation and epithelial-mesenchymal transition(EMT) in human lens epithelial cells(LECs). METHODS: RNA interference was used to inhibit the expression of EDIL3 in human LECs in vitro. The morphology of cells was observed using an inverted microscope. Cell proliferation was assessed using Ed U kit. Cell migration was investigated using Transwell chamber and EMT of LECs was assessed using confocal microscope and Western blotting. The transforming growth factor β(TGFβ) pathway was investigated using Western blotting. RESULTS: The data showed that silencing EDIL3 expression changed LECs morphology and suppressed LECs proliferation(P〈0.05) and migration(P〈0.01). Furthermore, the result of Western blotting showed that EDIL3 depletion reduced the expression of α-smooth muscle actin(α-SMA)(P〈0.001) and vimentin(P〈0.01), while increased the expression of E-cadherin(P〈0.001). EDIL3 depletion could suppress the phosphorylation of Smad2(P〈0.01) and Smad3(P〈0.01) and the activation of exracellular signal regulated kinase(ERK)(P〈0.05). CONCLUSION: The findings indicate that EDIL3 might participate in the proliferation and EMT in LECs via TGFβ pathway and may be a potential therapeutic target for the treatment of posterior capsule opacification.展开更多
AIM:To evaluate the regulation of the aberrant expression of collagen typeⅣalpha 1 chain(COL4A1)in the development of age-related cataract(ARC).METHODS:Quantitative reverse transcription-polymerase chain reaction(qRT...AIM:To evaluate the regulation of the aberrant expression of collagen typeⅣalpha 1 chain(COL4A1)in the development of age-related cataract(ARC).METHODS:Quantitative reverse transcription-polymerase chain reaction(qRT-PCR)and Western blot analysis were employed to evaluate the expression of COL4A1 in ARC patients and healthy controls.The proliferation,apoptosis,cell cycle and epithelial-mesenchymal transition(EMT)of human lens epithelial cell(HLE-B3)were further analyzed under the condition of COL4A1 gene silence.Alteration of gene expression at mRNA level after knockdown COL4A1 were also evaluated by qRT-PCR on HLE-B3 cells.RESULTS:The aberrant expression of COL4A1 was identified a clinically associated with the ARC.Silencing of COL4A1 promoted the apoptosis and inhibited the proliferation of HLE-B3 by blocking the cell cycle.Moreover,COL4A1 gene silence didn’t affect the cytoskeleton of HLE-B3 but down-regulated the Collagen typeⅣAlpha 2 Chain(COL4A2),paired box 6(PAX6),procollagen-lysine 2-oxoglutarate 5-dioxygenases 1(PLOD1)and procollagenlysine 2-oxoglutarate 5-dioxygenases 2(PLOD2)expression levels in HLE-B3 cells.Silencing the COL4A1 gene induced EMT of the HLE-B3 cells by promoting the transforming growth factor beta(TGF-β)expression.CONCLUSION:Silencing of COL4A1 induces S-phase arrest,also inhibits the proliferation and enhance HLE-B3 apoptosis and EMT,and down-regulates the expression of COL4A2,PAX6,PLOD1 and PLOD2.Thus,the expression alteration of COL4A1 may play a critical role in the pathogenesis of ARC.展开更多
基金Supported by National Natural Science Foundation for Young Scientists of China(No.82101097)National Natural Science Foundation of China(No.82070937).
文摘AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.
基金supported by National Natural Science Foundation of China(No.30471538)Traditional Chinese Medicine Foundation of Zhejiang province(No.2005C086).
文摘The apoptosis of lens epithehal cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50 μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H202 for 18 h, a high fraction of riLE cells underwent apoptosis, while in the presence ofparthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H202 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation ofcaspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation ofcaspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.
文摘AIM: To investigate the role of micro RNA-34a(mi R-34a) in the induction of apoptosis of human lens epithelial(HLE-B3) cells. METHODS: The apoptosis of HLE-B3 cells was detected by Annexin V-PE apoptosis detection kit after the treatment with 200 μmol/L H2O2 for 24h and lentiviral mi R-34 a vector transfection. The expression of mi R-34 a in the cells was quantified by quantitative real time polymerase chain reaction(q RT-PCR) in response to H2O2 exposure and the vector transfection. The effects of overexpression of mi R-34 a on the expression of B-cell lymphoma-2(Bcl-2) and silent information regulator 1(SIRT1) was determined by q RT-PCR and Western blot. RESULTS: The expression of mi R-34 a was up-regulated by the treatment of H2O2 in HLE-B3 cells. The increased expression of mi R-34 a is accompanied with the cell apoptosis. Consistence with the H2O2 exposure,ectopic overexpression of mi R-34 a in HLE-B3 cells promoted cells apoptosis. Importantly the anti-apoptosis factors Bcl-2 and SIRT1 were reduced significantly by up-regulation of mi R-34 a in HLE-B3 cells.CONCLUSION: Mi R-34 a promotes the apoptosis of HLE-B3 cells by down-regulating Bcl-2 and SIRT1,suggesting that mi R-34 a may involve in the pathogenesis of cataract formation and targeting mi R-34 a may be a potentially therapeutic approach for treatment of cataract.
基金Supported by the National Natural Science Foundation of China (No.U1304812)the Henan Science and Technology Key Project (No.142102310053)
文摘AIM: To study the potential role of fasudil as a treatment for posterior capsular opacification(PCO) of the human crystalline lens.METHODS: Human lens epithelial cells(HLECs; line SRA01/04) was exposed to transforming growth factor-β2(TGF-β2) to induce the process of epithelial-mesenchymal transition(EMT). Fasudil was applied to the cell samples. Its effect on overall HLECs proliferation and migration was studied, as was its influence on EMT induction by TGF-β2 using cell migration assay, MTT colorimetric assay and Western blot assay.RESULTS: Fasudil inhibited the proliferation of SRA01/04. Its effect was time-and concentration-dependent. The migration of SRA01/04 cells was significantly reduced 24-72 h after fasudil treatment, and the half maximal inhibitory concentration(IC50) was 22.37 μmol/mL at 72 h. Reversal of the elongated, fibroblast-like shape changes induced by TGF-β2 in SRA01/04 cells was observed. Fasudil up-regulated the expression of Connexin43 protein and down-regulated the expression of α-SMA protein compared with the cells treated with TGF-β2. Furthermore, when exposed to fasudil, the phosphorylation of Rhoassociated protein kinase(Rock) and myosin light chain(MLC) could not be activated in the cell preparations.CONCLUSION: Fasudil suppresses the proliferation and migration of SRA01/04 cells, and inhibits the process of EMT induced by TGF-β2. These results suggest that fasudil may serve as a therapeutic agent for PCO.
文摘The effects of sodium salicylate on the expression of heat shock protein 27 (HSP27) during oxidative stress in tissue-cultured human lens epithelial cells were investigated. Cultured human lens epithelial cells (HLB-3) were divided into 3 groups: control group (group A), oxidation injury group (group B) and sodium salicylate group (group C). Apoptosis of human lens epithelial cells cultured in vitro was induced in the presence of 150 μmol/L H2O2. Cells viability and the expression of HSP27 were analyzed. Viability of the cells was measured by methyl thiazole tetrazolium (MTT) chromatometry. The expression of HSP27 in HLB-3 cells was detected by using immunohistochemistry and image analysis system, Sodium salicylate could induce the expression of HSP27, and the cells viability in group C was significantly higher than in group B (0.2667±0.01414 vs 0.2150±0.01080, P=0.012〈0.05). The average gray value of HSP27 in group B was less than that in group C (P=0.000〈0.05). The increased expression of HSP27 by sodium salicylate might play an important role in the protection of hydrogen peroxide-induced injury of human lens epithelial cells, suggesting that sodium salicylate could suppress, at least in part, the apoptosis of human lens epithelial cells.
文摘The effects of rapamycin on the expression of Bcl-2 and Bax protein in in vitro cultured human lens epithelial cells(LECs) and cell cycle were investigated in order to provide the theoretical basis for the development of new inhibitory drugs for clinical prevention and treatment of after-cataract.The cultured LECs of second and third passages were collected and treated with rapamycin.The LECs were transferred into 96-well culture plates and divided into 6 groups,and each group was set to have 8 duplicate wells.In the negative control group,the LECs were given culture medium only,and in the blank control group,only culture medium was given.In the four rapamycin-treated groups,different concentrations(20,40,60 and 80 ng/mL) of rapamycin were given.After treatment for 24,48 and 72 h,the absorbance(A) values in each well were determined by MTT assay.The cell cycles of all groups were detected by using flow cytometry.Real-time fluorescent quantitative polymerase chain reaction(RFQ-PCR) and Western blot were used to detect the mRNA and protein expression of Bcl-2 and Bax respectively.MTT assay showed that rapamycin could inhibit proliferation of LECs in a time-and dose-dependent manner.Flow cytometry revealed that rapamycin could block the conversion of LECs from G1 phase to S phase,resulting in the increase of cells in G1 phase and the decrease of the cells in S phase.RFQ-PCR indicated that rapamycin could down-regulate the expression of Bcl-2 mRNA,but up-regulate the expression of Bax mRNA,suggesting it could induce apoptosis of LECs.Western blot demonstrated that rapamycin could suppress the expression of Bcl-2 protein,but promote the expression of Bax protein.It is concluded that rapamycin could inhibit proliferation of LECs probably not only by blocking the progression of cell cycle,but also by promoting the induction of apoptosis.
基金National Natural Science Foundation of China(No.81070721)Inernational Exchange Program of Shaanxi Province,China(No.2012kw-31)
文摘AIM:To Investigate the effects of transforming growth factorβ2(TGF-β2)and connective tissue growth factor(CTGF)on transdifferentiation of human lens epithelial cells(HLECs)cultured in vitro and synthesis of extracellular matrix(ECM).METHODS:HLECs were treated with TGF-β2(0,0.5,1.0,5,10μg/L)and CTGF(0,15,30,60,100μg/L)for different times(0,24,48,72h)in vitro and the expression ofα-smooth muscle actin(α-SMA),the main component of the extracellular matrix typeⅠcollagen(Col-1)and fibronectin(Fn)were measured by using real-time polymerase chain reaction(PCR)and western-blot.RESULTS:TGF-β2 and CTGF significantly increased expression ofα-SMA mRNA and protein(P【0.05,P【0.001),Fn mRNA and protein(P【0.001),Col-1 mRNA and protein(P【0.001).TGF-β2 could induce HLECs expression of CTGF mRNA and protein in dosedependent manner(P【0.05,P【0.001).TGF-β2 and CTGF could induce HLECs to expressα-SMA,Fn and Col-1 in time-dependent manner.Each time of TGF-β2and CTGF induced HELCs expression ofα-SMA,Fn,Col-1 mRNA and protein was significant increase compared with control(P【0.05,P【0.001).CONCLUSION:TGF-β2 and CTGF could induce HLECs epithelial mesenchymal transition and ECM synthesis.
基金Supported by the National Natural Science Foundation of China(No.81273605,No.30901655)
文摘AIM:To investigate the effects of lentivirus(LV)mediated integrin-linked kinase(ILK)RNA interference(RNAi)on biological behaviors of human lens epithelial cells(LECs).·METHODS:Human cataract LECs and immortalized human LEC line,human lens epithelial(HLE)B-3 cells were transfected by lentiviral vector expressing ILKspecific short hairpin RNA(sh RNA)and then stimulated by transforming growth factor-β(TGF-β),the silencing of ILK gene and protein was identified by reverse transcription-polymerase chain reaction(RT-PCR)and Western blot methods;biological behaviors including cell cycle and apoptosis,cell morphology,α-smooth muscle actin(SMA)stress fiber formation and cell migration were examined.·RESULTS:Remarkable decreases of ILK protein expression were detected in LECs carrying lentiviral ILK-sh RNA vector;flow cytometry revealed arresting of cell cycle progression through the G1/S transition and higher apoptosis rate in ILK-RNAi-LV transfected cells.Lessα-SMA stress fiber formation and migration was observed in ILK-RNAi-LV transfected LECs.·CONCLUSION:The present study demonstrated that ILK was an important regulator for LECs proliferation and migration.LV mediated ILK RNAi is an effective way todecrease ILK-regulated cell growth by arresting cell cycle progression and increasing cell apoptosis,as well as,to prevent cell migration by inhibiting TGF-βinducedα-SMA stress fiber formation.Thus,LV mediated ILK RNAi might be useful to prevent posterior capsular opacification.
文摘The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. HLECs-B3 were incubated in the fresh media containing sodium salicylate at different concentrations for different durations, and allowed to be recovered in fresh medium without sodium salicylate for different durations with or without pretreatment with p38MAPK inhibitor (SB203580), ERK1/2 inhibitor (PD98059) and JNK/SAPK inhibitor (SP600125). The expression of P38MAPK, ERK1/2, JNK/SAPK, phosphorylated P38MAPK, phosphorylated ERK1/2, phosphorylated JNK/SAPK and HSP27 was detected by Western blot. The expression of HSP27 mRNA and protein was detected by RT-PCR and immunohistochemistry respectively. It was found there was only weak expression of HSP27 in normal HLECs. The expression of HSP27 was not detectable in HLECs-B3 that were exposed to sodium salicylate (55 retool/L) for 1-5 h. It was indicated that recovery from sodium salicylate (〉35 mmol/L) significantly increased the synthesis of HSP27. The expression of HSP27 was up-regulated in HLECs-B3 under sodium salicylate recovery for 3 h, reached the peak level for 6 h, and returned to the level of control cells by 24 h. Activation of P38MAPK from sodium salicylate stimulation occurred at 30th rain, and increased significantly at 1st h, then declined and renamed to baseline level at 3rd h under sodium salicylate recovery. Activation of ERK1/2 occurred at 1st h and reached the peak level at 6th h under sodium salicylate recovery. However, JNK/SAPK was inactivated by sodium salicylate. The expression of HSP27 could be down-regulated with the pretreatment of SB203580 and PD98059 jointly. It is concluded that sodium salicylate can induce the expression of HSP27 in HLECs-B3. The effects are mediated, at least in part, through the activation of P38MAPK and ERK1/2 signaling pathway.
文摘The effects of NO-Fluvastatin on proliferation of human lens epithelial cells (HLECs) and the action mechanism were investigated. Cell proliferation was assessed by MTT assay. Cell cycle was analyzed by flow cytometry. The expression of cell cycle regulatory proteins CyclinE mRNA and P21waf1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). MTT staining colorimetry showed that HLECs proliferation was markedly inhibited by NO-Fluvastatin and the effect was dependently related to time (24, 48 and 72 h) and dosage (1, 5 and 20 μmol/L). Flow cytometry revealed that NO-Fluvastatin could significantly block HLECs in the G0/G1 phase, resulting in the increased cells in the G0/G1 phase and decreased in the S phase (P〈0.05). RT-PCR showed that NO-Fluvastatin could obviously inhibit the CyclinE mRNA expression and induce the P21waf1 mRNA expression as compared with the negative control groups (P〈0.05). This experiment suggested that NO-Fluvastatin could suppress the proliferation of HLECs by regulating cell cycle regulatory proteins (inhibiting the expression of CyclinE mRNA and inducing the expression of P21waf1 mRNA), resulting in the arrest of HLECs in the G0/G1 phase, which can offer theory basis for NO-Fluvastatin in treating posterior capsular opacification in clinic practice.
基金Supported by the National Natural Science Foundation of China(No.81360146)
文摘AIM: To study the effect of senescence marker protein 30(SMP30) on the proliferation and apoptosis of human lens epithelial cell(HLEC) SRA01/04.METHODS: SMP30 overexpression(OE) and knock down(KD) type cell lines were cultivated by using two groups regucalcin(RGN; SMP30) lentiviral vectors(LVRGN, LV-RGN-RNAi) and the respective negative control virus infect SRA01/04 cells. Western blot and real-time quantitative polymerase chain reaction(q-PCR) analysis were used to determine RGN overexpression and knock down efficiency. We use cell counting kit-8(CCK8) assay to measure cell viability and 5-bromodeoxyuridine(Brd U) assay to test cell proliferation. Cell cycle was measured by PI FACS assay and cell apoptosis was tested by Annexin V-APC assay through flow cytometry. We use Western blot to measure the content of caspase-3 in SRA01/04.RESULTS: We used PCR and Western blot techniques to determine the successful transfection of SMP30 OE and KD SRA01/04 cell lines. By CCK8, Brdu and PI FACS cell cycle assay, it was found that the SMP30 OE group promoted cell proliferation(P〈0.05) compared with the control group, and the KD group inhibited cell proliferation(P〈0.05). The results of Annexin V-APC signal staining detection indicated that compared with respective control group, the cell apoptosis rate was higher in KD group(P〈0.05) but lower in OE group(P〈0.01). The expression of caspase-3 was down-regulated in OE group through Western blot assay and up-regulated in KD group compared with respective control group. CONCLUSION: Proliferation of SRA01/04 was promoted by SMP30 OE and apoptosis was suppressed. Increasing the expression of SMP30 may protect HLEC SRA01/04 against apoptosis in cataract.
基金Supported by the National Natural Science Foundation of China(No.81371000No.81670834)+2 种基金the Natural Science Foundation of Zhejiang Province(No.LY17H090004)the Zhejiang Traditional Chinese Medicine Project(No.2013ZA080)the Fundamental Research Funds for the Central Universities(No.2017FZA7002)
文摘AIM: To explore the effect of parthenolide on hydrogen peroxide(H_2O_2)-induced apoptosis in human lens epithelial(HLE) cells. METHODS: The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS: Apoptosis of HLE cells was induced by 200 μmol/L H_2O_2, and the viability of these cells was similar to the half maximal inhibitory concentration(IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations(6.25, 12.5, 25 and 50 mol/L) of parthenolide along with 200 μmol/L H_2O_2 or only 50 μmol/L parthenolide or 200 mol/L H_2O_2 for 24 h. Following treatment with higher concentrations of parthenolide(50 μmol/L), fewer HLE cells underwent H_2O_2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB(NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase(MAPK) family], and Akt proteins in HLE cells. CONCLUSION: Parthenolide may suppress H_2O_2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling.
基金Supported by the National Natural Science Foundation of China(No.82201163,No.81800812)Natural Science Foundation Youth Foundation of Shaanxi Province(No.2023-JC-QN-0861)Shaanxi Province Key Research and Development Program(No.2023-YBSF-483).
文摘AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after transforming growth factorβ2(TGF-β2)induction.Apoptosis of HLECs after H_(2)O_(2) and TGF-β2 interference with or without ROS scavenger N-acetylcysteine(NAC)were assessed by flow cytometry.The corresponding protein expression levels of the EMT markerα-smooth muscle actin(α-SMA),the extracellular matrix(ECM),marker fibronectin(Fn),and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger(NAC).Wound-healing and Transwell assays were used to assess the migration capability of HLECs.RESULTS:TGF-β2 stimulates ROS production within 8h in HLECs.Additionally,TGF-β2 induced HLECs cell apoptosis,EMT/ECM synthesis protein markers expression,and pro-apoptotic proteins production;nonetheless,NAC treatment prevented these responses.Similarly,TGF-β2 promoted HLECs cell migration,whereas NAC inhibited cell migration.We further determined that although ROS initiated apoptosis,it only induced the accumulation of the EMT markerα-SMA protein,but not COL-1 or Fn.CONCLUSION:ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs;however,ROS alone are not sufficient for EMT/ECM synthesis.
基金Supported by the National Natural Science Foundation for Distinguished Young Scholars of China (No. 81100654)
文摘AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made by melt emulsification method. The morphology, particle size(PS), zeta potentials(ZP), encapsulation efficiency(EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier(NLC), genistein(Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8(CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction(RT-q PCR) and immunofluorescence analyses.·RESULTS: The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was-7.14 ±0.38 m V and the EE of Gen in the nanoparticles was 92.3% ±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72 h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The m RNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group.·CONCLUSION: Sustained drug release by Gen-NLCs may impede HLEC growth.
文摘AIM: To study the differences of fibroblast growth factor receptor 1 (FGFR1) gene on human lens epithelial cells (HLECs) of adults and fetuses. METHODS: Indirect in situ RT-PCR was adopted for detection of FGFR1 gene. The cDNA of the nnRNA in the paraffin sections of fetus and adult HLEC was synthesized by reverse transcription reaction. After PCR amplification, in situ hybridization test was performed with synthesized oligonucleotide probe and relative quantification was carried out using image analysis. RESULTS: HLECs of adults and fetuses expressed FGFR1 gene, the expression level was higher in fetuses than in adults. The difference between them had significance (P<0.05). CONCLUSION: FGFR1 Exist in HLEC and the expression is age-related, which could be one of causes of the high occurrence of post operational after-cataract in children.
基金Supported by the National Natural Science Foundation of China(No.81970806)Medical Scientific Research Foundation of Guangdong Province of China(No.A2019098)。
文摘AIM:To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide(LBP-Se NPs)on the proliferation of human lens epithelial cells(HLECs)from UV irradiation.METHODS:LBP-Se NPs were prepared and their particle size was detected.HLECs(SRA01/04)were irradiated with UVB for different time(0,10,20,30,40,50,60 min)to construct a damaged model,the survival rate of cells was determined by methylthiazol tetrazolium(MTT)assay.The 4’,6-Diamidine-2’-phenylindole dihydrochloride(DAPI)staining was used to observe the status of cell nucleus and drug entering cytoplasm through cell membrane in SRA01/04 cells after adding LBP-SENPS loaded with coumarin fluorescence agent 24 h under fluorescence microscope.SRA01/04 normal and UVB-damaged cells were treated with different amounts of LBP-Se NPs at different concentrations,cells proliferation were observed.RESULTS:The particle size of LBP-Se NPs was stable in the range of 150-200 nm.The survival rate changes with time after UVB irradiation were statistically significant.The 10 min of UVB exposure as the time was chosen to construct the cell damage model.With DAPI staining,LBPSe NPs were observed to enter the cytoplasm through the cell membrane under fluorescence inverted microscope.Cytotoxicity of SRA01/04 at different concentrations of LBPSe NPs were measured.Cell survival rate was statistically different compared with the control group.The higher the loading concentration of LBP in nano-Se drugs was,the higher the cell proliferation rate was(P<0.05).The lower the concentration of LBP-Se NPs,the higher the cell proliferation rate,showing a negative growth trend(P<0.05).The group with the highest average cell proliferation rate was 0.5μmol/L 2.0 mg/m L LBP-Se NPs(128.80%).When the 2.0 mg/m L LBP-Se NPs group was selected for cell photography,the cell density was higher at 0.5μmol/L.With the increase of concentration,SRA01/04 cells appeared more cytoplasm dehydration,cell shrinkage and apoptotic bodies,and cell density decreased.CONCLUSION:LBP-Se NPs has moderate particle size and good stability.LBP-Se NPs can protect HLECs(SRA01/04)from UVB-induced damage,and the cell proliferation rate is further increased with increasing the amount of loaded LBP and decreasing nano-selenium concentration.
基金Supported by National Natural Science Foundation of China(No.81470614,No.81460163,No.81300786)Fundamental Research Funds for the Central Universities(No.xjj2014146)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20133601120012)Key International Communication Project of Shaanxi province(No.2012KW-31)
文摘AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis.RESULTSHLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01).CONCLUSIONTranscription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.
基金Supported by the National Natural Science Foundation of China(No.81771499)the Natural Science Foundation of Hebei Province,China(No.H2018206099,No.H2021206460)。
文摘AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CCK-8)and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays were used to assess HLEC viability.HLEC viability/death was detected using a Calcein-AM/PI double staining kit;the annexin V-FITC method was used to detect HLEC apoptosis.The cytosolic reactive oxygen species(ROS)levels in HLECs were determined using a reactive species assay kit.The levels of malondialdehyde(MDA)and the antioxidant activities of total-superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)were assessed in HLECs using their respective kits.RT-q PCR and Western blotting were used to measure m RNA and protein expression levels of the genes.RESULTS:Aluas RNA rescued methylglyoxal-induced apoptosis in HLECs and ameliorated both the methylglyoxalinduced decrease in Bcl-2 m RNA and the methylglyoxalinduced increase in Bax m RNA.In addition,Aluas RNA inhibited the methylglyoxal-induced increase in Alu sense RNA expression.Aluas RNA inhibited the production of ROS induced by methylglyoxal,restored T-SOD and GSHPx activity,and moderated the increase in MDA content after treatment with methylglyoxal.Aluas RNA significantly restored the methylglyoxal-induced down-regulation of Nrf2 gene and antioxidant defense genes,including glutathione peroxidase,heme oxygenase 1,γ-glutamylcysteine synthetase and quinone oxidoreductase 1.Aluas RNA ameliorated methylglyoxal-induced increases of the m RNA and protein expression of Keap1 that is the negative regulator of Nrf2.CONCLUSION:Aluas RNA reduces apoptosis induced by methylglyoxal by enhancing antioxidant defense.
基金Supported by the National Natural Science Foundation of China (No.81700839)Military logistics scientific research project (No.BWS12J030)+2 种基金Natural Science Foundation of Shanghai (No.15ZR1413200)Research Foundation for Youth of Second Military Medical University (No.2016QN13)Research Foundation for Youth of Changhai Hospital (No.CH201712)
文摘AIM: To study the effect of discoidin I-like domaincontaining protein 3(EDIL3) depletion on the proliferation and epithelial-mesenchymal transition(EMT) in human lens epithelial cells(LECs). METHODS: RNA interference was used to inhibit the expression of EDIL3 in human LECs in vitro. The morphology of cells was observed using an inverted microscope. Cell proliferation was assessed using Ed U kit. Cell migration was investigated using Transwell chamber and EMT of LECs was assessed using confocal microscope and Western blotting. The transforming growth factor β(TGFβ) pathway was investigated using Western blotting. RESULTS: The data showed that silencing EDIL3 expression changed LECs morphology and suppressed LECs proliferation(P〈0.05) and migration(P〈0.01). Furthermore, the result of Western blotting showed that EDIL3 depletion reduced the expression of α-smooth muscle actin(α-SMA)(P〈0.001) and vimentin(P〈0.01), while increased the expression of E-cadherin(P〈0.001). EDIL3 depletion could suppress the phosphorylation of Smad2(P〈0.01) and Smad3(P〈0.01) and the activation of exracellular signal regulated kinase(ERK)(P〈0.05). CONCLUSION: The findings indicate that EDIL3 might participate in the proliferation and EMT in LECs via TGFβ pathway and may be a potential therapeutic target for the treatment of posterior capsule opacification.
基金Supported by Supporting Fund Project of Shaanxi Provincial Department of Science and Technology Agency Project(No.2022SF-502)Special Scientific Research Program of Education Department of Shaanxi Provincial Government(No.21JK0891)+1 种基金Young Talent Lifting Project of Xi’an Science and Technology Association(No.095920221365)Innovation and Entrepreneurship Training Program for College students of Xi’an Medical University(No.121521113)。
文摘AIM:To evaluate the regulation of the aberrant expression of collagen typeⅣalpha 1 chain(COL4A1)in the development of age-related cataract(ARC).METHODS:Quantitative reverse transcription-polymerase chain reaction(qRT-PCR)and Western blot analysis were employed to evaluate the expression of COL4A1 in ARC patients and healthy controls.The proliferation,apoptosis,cell cycle and epithelial-mesenchymal transition(EMT)of human lens epithelial cell(HLE-B3)were further analyzed under the condition of COL4A1 gene silence.Alteration of gene expression at mRNA level after knockdown COL4A1 were also evaluated by qRT-PCR on HLE-B3 cells.RESULTS:The aberrant expression of COL4A1 was identified a clinically associated with the ARC.Silencing of COL4A1 promoted the apoptosis and inhibited the proliferation of HLE-B3 by blocking the cell cycle.Moreover,COL4A1 gene silence didn’t affect the cytoskeleton of HLE-B3 but down-regulated the Collagen typeⅣAlpha 2 Chain(COL4A2),paired box 6(PAX6),procollagen-lysine 2-oxoglutarate 5-dioxygenases 1(PLOD1)and procollagenlysine 2-oxoglutarate 5-dioxygenases 2(PLOD2)expression levels in HLE-B3 cells.Silencing the COL4A1 gene induced EMT of the HLE-B3 cells by promoting the transforming growth factor beta(TGF-β)expression.CONCLUSION:Silencing of COL4A1 induces S-phase arrest,also inhibits the proliferation and enhance HLE-B3 apoptosis and EMT,and down-regulates the expression of COL4A2,PAX6,PLOD1 and PLOD2.Thus,the expression alteration of COL4A1 may play a critical role in the pathogenesis of ARC.