AIM: To determine whether the human giant larvae homolog 1 gene (Hugl-1/Llg1/Lgl1) exerts tumor suppressor effects in esophageal cancer. METHODS: We constructed a Hugl-1 expression plasmid, pEZ-M29-Hugl1, for gene tra...AIM: To determine whether the human giant larvae homolog 1 gene (Hugl-1/Llg1/Lgl1) exerts tumor suppressor effects in esophageal cancer. METHODS: We constructed a Hugl-1 expression plasmid, pEZ-M29-Hugl1, for gene transfection. We transfected the pEZ-M29-Hugl1 plasmid into Eca109 esophageal cancer cell lines with Lipofectamine 2000 to overexpress Hugl-1. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the effects of the plasmid on Hugl-1 expression. In vitro cell proliferation and apoptosis were examined separately by cell counting Kit-8 (CCK-8) assay, flow cytometry, and Western blotting before and after the transfection of the plasmid into Eca109 cells. Cell cycle distribution was assessed with flow cytometry. The effect of Hugl-1 overexpressing on tumor growth in vivo was performed with a xenograft tumor model in nude mice. Expression of Hugl-1 in xenograft tumor was analyzed by immunohistochemistry.The transferase-mediated dUTP nick end-labeling (TUNEL) technique was performed to detect and quantitate apoptotic cell. RESULTS: The transfection efficiency was confirmed with real-time RT-PCR and Western blotting. Our results show that compared with control groups the mRNA levels and protein levels of Hugl-1 in pEZ-M29-Hugl1-treated group were remarkably increased (P < 0.05). The CCK-8 assay demonstrated that the growth of cells overexpressing Hugl-1 was significantly lower than control cells. Cell cycle distribution showed there was a G 0 /G 1 cell cycle arrest in cells overexpressing Hugl-1 (64.09% ± 3.14% vs 50.32% ± 4.60%, 64.09% ± 3.14% vs 49.13% ± 2.24%). Annexin V-fluorescein isothiocyanate revealed that apoptosis was significantly increased in cells overexpressing Hugl-1 compared with control group (17.33% ± 4.76% vs 6.90% ± 1.61%, 17.33% ± 4.76% vs 6.27% ± 0.38%). Moreover, we found that Hugl-1 changes the level of the anti-apoptotic protein Bcl-2 and the proapoptotic protein Bax and the activation of both caspase-3 and caspase-9. With a TUNEL assay, we found that Hugl-1 markedly increased the apoptosis rate of Eca109 cells in vivo (60.50% ± 9.11% vs 25.00% ± 12.25%). It was shown that Hugl-1 represents a significantly more effective tumor suppressor gene alone in a xenograft tumor mouse model. This data suggest that Hugl-1 inhibited tumor growth and induced cell apoptosis in vivo . CONCLUSION: These results suggest that Hugl-1 induces growth suppression and apoptosis in a human esophageal squamous cell carcinoma cell line both in vitro and in vivo .展开更多
基金Supported by The Fundamental Research Funds for the Central Universities, No. 302274546
文摘AIM: To determine whether the human giant larvae homolog 1 gene (Hugl-1/Llg1/Lgl1) exerts tumor suppressor effects in esophageal cancer. METHODS: We constructed a Hugl-1 expression plasmid, pEZ-M29-Hugl1, for gene transfection. We transfected the pEZ-M29-Hugl1 plasmid into Eca109 esophageal cancer cell lines with Lipofectamine 2000 to overexpress Hugl-1. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the effects of the plasmid on Hugl-1 expression. In vitro cell proliferation and apoptosis were examined separately by cell counting Kit-8 (CCK-8) assay, flow cytometry, and Western blotting before and after the transfection of the plasmid into Eca109 cells. Cell cycle distribution was assessed with flow cytometry. The effect of Hugl-1 overexpressing on tumor growth in vivo was performed with a xenograft tumor model in nude mice. Expression of Hugl-1 in xenograft tumor was analyzed by immunohistochemistry.The transferase-mediated dUTP nick end-labeling (TUNEL) technique was performed to detect and quantitate apoptotic cell. RESULTS: The transfection efficiency was confirmed with real-time RT-PCR and Western blotting. Our results show that compared with control groups the mRNA levels and protein levels of Hugl-1 in pEZ-M29-Hugl1-treated group were remarkably increased (P < 0.05). The CCK-8 assay demonstrated that the growth of cells overexpressing Hugl-1 was significantly lower than control cells. Cell cycle distribution showed there was a G 0 /G 1 cell cycle arrest in cells overexpressing Hugl-1 (64.09% ± 3.14% vs 50.32% ± 4.60%, 64.09% ± 3.14% vs 49.13% ± 2.24%). Annexin V-fluorescein isothiocyanate revealed that apoptosis was significantly increased in cells overexpressing Hugl-1 compared with control group (17.33% ± 4.76% vs 6.90% ± 1.61%, 17.33% ± 4.76% vs 6.27% ± 0.38%). Moreover, we found that Hugl-1 changes the level of the anti-apoptotic protein Bcl-2 and the proapoptotic protein Bax and the activation of both caspase-3 and caspase-9. With a TUNEL assay, we found that Hugl-1 markedly increased the apoptosis rate of Eca109 cells in vivo (60.50% ± 9.11% vs 25.00% ± 12.25%). It was shown that Hugl-1 represents a significantly more effective tumor suppressor gene alone in a xenograft tumor mouse model. This data suggest that Hugl-1 inhibited tumor growth and induced cell apoptosis in vivo . CONCLUSION: These results suggest that Hugl-1 induces growth suppression and apoptosis in a human esophageal squamous cell carcinoma cell line both in vitro and in vivo .