The intestinal microbiome has emerged as an important component involved in various diseases.Therefore,the interest in understanding the factors shaping its composition is growing.The gut microbiome,often defined as a...The intestinal microbiome has emerged as an important component involved in various diseases.Therefore,the interest in understanding the factors shaping its composition is growing.The gut microbiome,often defined as a complex trait,contains diverse components and its properties are determined by a combination of external and internal effects.Although much effort has been invested so far,it is still difficult to evaluate the extent to which human genetics shape the composition of the gut microbiota.However,in mouse studies,where the environmental factors are better controlled,the effect of the genetic background was significant.The purpose of this paper is to provide a current assessment of the role of human host genetics in shaping the gut microbiome composition.Despite the inconsistency of the reported results,it can be estimated that the genetic factor affects a portion of the microbiome.However,this effect is currently lower than the initial estimates,and it is difficult to separate the genetic influence from the environmental effect.Additionally,despite the differences between the microbial composition of humans and mice,results from mouse models can strengthen our knowledge of host genetics underlying the human gut microbial variation.展开更多
Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by ...Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay.Results The cell line bore a missense mutation in the 6th coding exon (c.676 C〉T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.展开更多
Objective Cytochrome P450 2E1 (CYP2E1) is an important metabolizing enzyme involved in oxidative stress responses to benzene, a chemical associated with bone marrow toxicity and leukemia, We aimed to identify the CY...Objective Cytochrome P450 2E1 (CYP2E1) is an important metabolizing enzyme involved in oxidative stress responses to benzene, a chemical associated with bone marrow toxicity and leukemia, We aimed to identify the CYP2E1 genetic biomarkers of susceptibility to benzene toxicity in support of environmental and occupational exposure prevention, and to test whether a model using immortal human lymphocytes might be an efficient tool for detecting genetic biomarkers. Methods Immortalized human lymphocyte cell lines with independent genotypes on four CYP2E1 SNP sites were induced with 0.01% phenol, a metabolite of benzene. CYP2E1 gene function was evaluated by mRNA expression and enzyme activity. DNA damage was measured by Single-Cell Gel Electrophoresis (SCGE). Results Among the four SNPs, cells with rs2070673TT and rs2030920CC showed higher levels of ~YP2E1 transcription and enzymatic activity than the other genotypes in the same SNP site. Cells with higher gene expression genotypes also showed higher comet rates compared with lower gene expression genotypes. Conclusion These results suggest that CYP2E1 rs2070673 and rs2030920 might be the genetic biomarkers of susceptibility to benzene toxicity and that the immortalized human lymphocytes model might be an efficient tool for the detection of genetic biomarkers of susceptibility to chemicals.展开更多
The human leucocyte antigen (HLA) complex on chromosome 6p21.3 is the most extensively studied genetic region in Inflammatory bowel disease (IBD). Consistent evidence of linkage to IBD3 (6p21.1-23), an area whic...The human leucocyte antigen (HLA) complex on chromosome 6p21.3 is the most extensively studied genetic region in Inflammatory bowel disease (IBD). Consistent evidence of linkage to IBD3 (6p21.1-23), an area which encompasses the HLA complex, has been demonstrated for both Crohn's disease and ulcerative colitis, and a number of replicated associations with disease susceptibility and phenotype have recently emerged. However, despite these efforts the HLA susceptibility gene (s) for IBD remain elusive, a consequence of strong linkage disequilibrium, extensive polymorphism and high gene density across this region. This article reviews current knowledge of the role of HLA complex genes in IBD susceptibility and phenotype, and discusses the factors currently limiting the translation of this knowledge to clinical practice.展开更多
Nearly half of the world population suffers from micronutrient malnutrition,particularly Zn deficiency.It is important to understand genetic variation for uptake and translocation behaviors of Zn in relevant crop spec...Nearly half of the world population suffers from micronutrient malnutrition,particularly Zn deficiency.It is important to understand genetic variation for uptake and translocation behaviors of Zn in relevant crop species to increase Zn concentration in edible parts.In the present study,genetic variation in grain Zn concentration of 319 finger millet genotypes was assessed.Large genetic variation was found among the genotypes,with concentrations ranging from 10 to 86 μg g^(-1)grain.Uptake and translocation studies with Zn/^(65) Zn application in 12 selected low-Zn genotypes showed wide variation in root uptake and shoot translocation,with genotypes GEC331 and GEC164 showing greater uptake and translocation.Genotypes GEC164 and GEC543 showed increased grain Zn concentration.Genotypes GEC331 and GEC164 also showed improved yield under Zn treatment.Appreciable variation in grain Zn concentration among finger millet genotypes found in this study offers opportunities to improve Zn nutrition through breeding.展开更多
Many biodynamic models have been derived using trial and error curve-fitting technique, such that the error between the computed and measured biodynamic response functions is minimum. This study developed a biomechani...Many biodynamic models have been derived using trial and error curve-fitting technique, such that the error between the computed and measured biodynamic response functions is minimum. This study developed a biomechanical model of the human body in a sitting posture without backrest for evaluating the vibration transmissibility and dynamic response to vertical vibration direction. In describing the human body motion, a three biomechanical models are discussed (two models are 4-DOF and one model 7-DOF). Optimization software based on stochastic techniques search methods, Genetic Algorithms (GAs), is employed to determine the human model parameters imposing some limit constraints on the model parameters. In addition, an objective function is formulated comprising the sum of errors between the computed and actual values (experimental data). The studied functions are the driving-point mechanical impedance, apparent mass and seat- to-head transmissibility functions. The optimization process increased the average goodness of fit and the results of studied functions became much closer to the target values (Experimental data). From the optimized model, the resonant frequencies of the driver parts computed on the basis of biodynamic response functions are found to be within close bounds to that expected for the human body.展开更多
Spinal cord injury (SCI) continues to be a pressing health and social problem. The injury leads to neuronal and glial cell death accompanied by degeneration of nerve fibers. There are currently no particularly effec...Spinal cord injury (SCI) continues to be a pressing health and social problem. The injury leads to neuronal and glial cell death accompanied by degeneration of nerve fibers. There are currently no particularly effective treatments. SCI causes profound disabil- ity of people affected and has attracted increased attention in the international field of neuroregeneration. For the past two decades, much hope has been placed in cell therapies for the restoration of both structure and function of the injured spinal cord. Embryonic and neural stem cells, olfactory ensheathing cells, microglia-like cells, Schwann cells, mesenchymal stem cells.展开更多
The ability to introduce precise genomic modifications in human cells has profound implications for both basic and applied research in stem cells, ranging from identification of genes regulating stem cell self-renewal...The ability to introduce precise genomic modifications in human cells has profound implications for both basic and applied research in stem cells, ranging from identification of genes regulating stem cell self-renewal and multilineage differentiation to therapeutic gene correction and creation of in vitro models of human diseases. However, the overall efficiency of this process is challenged by several factors including inefficient gene delivery into stem cells and low rates of homology directed site-specific targeting. Recent studies report the development of novel techniques to improve gene targeting efficiencies in human stem cells; these methods include molecular engineering of viral vectors to efficiently deliver episomal genetic sequences that can participate in homology directed targeting, as well as the design of synthetic proteins that can introduce double-stranded breaks in DNA to initiate such recombination events. This review focuses on the potential of these new technologies to precisely alter the human stem cell genome and also highlights the possibilities offered by the combination of these complementary strategies.展开更多
Mansonia altissima is an important West African timber tree species. For the purpose of examining the effect of human impact on its genetic diversity, genetic diversity and spatial genetic structure of the species und...Mansonia altissima is an important West African timber tree species. For the purpose of examining the effect of human impact on its genetic diversity, genetic diversity and spatial genetic structure of the species under different regimes of human impact were investigated in the Akure Forest Reserve, Nigeria, using 504 amplified fragment length polymorphism (AFLP) markers. The results indicate a very low genetic diversity in M. altissima within the forest reserve (He = 0.045; PPL = 16.75%; Br = 1.162). The highest genetic diversity was observed in the primary forest (H e= 0.062; PPL - 21.00%; Br = 1.204), with the lowest genetic diversity in the isolated forest patch (He = 0.032; PPL = 9.00%; B r= 1.089). A significant and pronounced spatial genetic structure was found in the logged forest and in the isolated forest patch. In contrast, the primary forest exhibited very weak spatial genetic structuring. As expected, no spatial genetic structure was found in the planted stands of M. altissima. From a conservation point of view, our results suggest that genetic diversity ofM. altissima is at risk in the forest reserve. The scale of human impact in the study area could pose a serious threat to the maintenance of genetic diversity of the species. These results would offer practical applications in the conservation of other tropical tree species.展开更多
The purpose of this essay is to argue that the genetic engineering may bring about benefits to human health and the environment.By means of research of secondary source collection,relevant evidence is selected,evaluat...The purpose of this essay is to argue that the genetic engineering may bring about benefits to human health and the environment.By means of research of secondary source collection,relevant evidence is selected,evaluated and organized into three main parts:improving agricultural environment,providing effective medical therapy and supplying safe and nutrition food to human body.In order to explain the benefits that created by genetic engineering technologies,examples based on opinions of experts and results of experts' experiments are used.The research results strongly suggest that the genetic engineering has positive effects on environment and mankind.Base on those finds,the argument is justified that genetic engineering is certainly beneficial to the environment and human health.In the future,more attention and researches should be focus on the genetic engineering with the purpose of benefiting human beings and the natural worlds.展开更多
The highest-level interference essence against virus and turnour genetic engineering medicine is a new type created in the 1980s. Compared with chemical medicines, the interference essence has a special effect in the ...The highest-level interference essence against virus and turnour genetic engineering medicine is a new type created in the 1980s. Compared with chemical medicines, the interference essence has a special effect in the treatment of viruses and tumours. The human a, type genetic engineering interference essense is prepared by the Institute of Viruses of the Chinese Academy of Preventive Medical Sciences, the Shanghai Vaccine展开更多
Objective:To compare embryonic development,ploidy status and clinical outcomes between fresh and frozen-thawed oocytes.Methods:This retrospective cohort study evaluated 83 fertilization cycles including both fresh and...Objective:To compare embryonic development,ploidy status and clinical outcomes between fresh and frozen-thawed oocytes.Methods:This retrospective cohort study evaluated 83 fertilization cycles including both fresh and frozen oocytes from 79 patients at the HP Fertility Center of Hai Phong International Hospital of Obstetrics and Pediatrics in Vietnam.The patient underwent several ovarian stimulation cycles to accumulate a certain number of oocytes that would be vitrified.In the last oocyte retrieval,all patient’s oocytes including both frozen and fresh would be fertilized.The outcomes included the rates of oocyte survival,cleavage embryo,blastocyst,ploidy status,pregnancy,biochemical pregnancy and clinical pregnancy.Results:The oocyte survival rate after thawing was 96.5%.No statistically significant difference was found when comparing fresh and frozen oocytes regarding fertilization rate(78.1%vs.75.5%,P=0.461),usable cleavage embryo rate(86.9%vs.87.2%,P=0.916)but usable blastocyst rate was found higher statistically in the frozen oocyte group(44.4%vs.54.0%,P=0.049).The percentages of euploid,aneuploid and mosaic embryos between the fresh group and the vitrified group had no significant differences(33.8%vs.31.6%,P=0.682;51.0%vs.54.2%,P=0.569;15.2%vs.12.4%,P=0.787;respectively).The rates of pregnancy,biochemical pregnancy and clinical pregnancy had no statistical difference(68.8%vs.64.8%,P=0.764;12.5%vs.3.6%,P=0.258;37.5%vs.46.4%,P=0.565).17 Mature oocytes are the minimum to have at least one euploid embryo.Conclusions:Oocyte vitrification does not affect embryonic,genetic and clinical results.The number of mature oocytes should be considered for fertilization in some cases.展开更多
基金Binational Science Foundation(BSF)grant number 2015077German Israeli Science Foundation(GIF)grant I-63-410.20-2017,Israeli Science Foundation(ISF)grant 1085/18,and Core Fund Form Tel-Aviv University.
文摘The intestinal microbiome has emerged as an important component involved in various diseases.Therefore,the interest in understanding the factors shaping its composition is growing.The gut microbiome,often defined as a complex trait,contains diverse components and its properties are determined by a combination of external and internal effects.Although much effort has been invested so far,it is still difficult to evaluate the extent to which human genetics shape the composition of the gut microbiota.However,in mouse studies,where the environmental factors are better controlled,the effect of the genetic background was significant.The purpose of this paper is to provide a current assessment of the role of human host genetics in shaping the gut microbiome composition.Despite the inconsistency of the reported results,it can be estimated that the genetic factor affects a portion of the microbiome.However,this effect is currently lower than the initial estimates,and it is difficult to separate the genetic influence from the environmental effect.Additionally,despite the differences between the microbial composition of humans and mice,results from mouse models can strengthen our knowledge of host genetics underlying the human gut microbial variation.
基金Supported by the National Science and Technology Major Project(2011ZX09102-010-04)
文摘Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay.Results The cell line bore a missense mutation in the 6th coding exon (c.676 C〉T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.
基金supported by the National Natural Science Foundation of China (Grant No: 30671731, 30901168)the Doctoral Program of Higher Education of China (Grant No: 20070286069)
文摘Objective Cytochrome P450 2E1 (CYP2E1) is an important metabolizing enzyme involved in oxidative stress responses to benzene, a chemical associated with bone marrow toxicity and leukemia, We aimed to identify the CYP2E1 genetic biomarkers of susceptibility to benzene toxicity in support of environmental and occupational exposure prevention, and to test whether a model using immortal human lymphocytes might be an efficient tool for detecting genetic biomarkers. Methods Immortalized human lymphocyte cell lines with independent genotypes on four CYP2E1 SNP sites were induced with 0.01% phenol, a metabolite of benzene. CYP2E1 gene function was evaluated by mRNA expression and enzyme activity. DNA damage was measured by Single-Cell Gel Electrophoresis (SCGE). Results Among the four SNPs, cells with rs2070673TT and rs2030920CC showed higher levels of ~YP2E1 transcription and enzymatic activity than the other genotypes in the same SNP site. Cells with higher gene expression genotypes also showed higher comet rates compared with lower gene expression genotypes. Conclusion These results suggest that CYP2E1 rs2070673 and rs2030920 might be the genetic biomarkers of susceptibility to benzene toxicity and that the immortalized human lymphocytes model might be an efficient tool for the detection of genetic biomarkers of susceptibility to chemicals.
文摘The human leucocyte antigen (HLA) complex on chromosome 6p21.3 is the most extensively studied genetic region in Inflammatory bowel disease (IBD). Consistent evidence of linkage to IBD3 (6p21.1-23), an area which encompasses the HLA complex, has been demonstrated for both Crohn's disease and ulcerative colitis, and a number of replicated associations with disease susceptibility and phenotype have recently emerged. However, despite these efforts the HLA susceptibility gene (s) for IBD remain elusive, a consequence of strong linkage disequilibrium, extensive polymorphism and high gene density across this region. This article reviews current knowledge of the role of HLA complex genes in IBD susceptibility and phenotype, and discusses the factors currently limiting the translation of this knowledge to clinical practice.
基金supported by projects from Department of Science and Technology(DST)(Grant#SR/SO/PS-14/2002)Department of Biotechnology(DBT)(Grant#BT/01/COE/05/03),New Delhi,Government of IndiaAll India Coordinated Research Project on millets(AICRP),GKVK,University of Agricultural Sciences,Bangalore,India for providing finger millet genotypes used in this study
文摘Nearly half of the world population suffers from micronutrient malnutrition,particularly Zn deficiency.It is important to understand genetic variation for uptake and translocation behaviors of Zn in relevant crop species to increase Zn concentration in edible parts.In the present study,genetic variation in grain Zn concentration of 319 finger millet genotypes was assessed.Large genetic variation was found among the genotypes,with concentrations ranging from 10 to 86 μg g^(-1)grain.Uptake and translocation studies with Zn/^(65) Zn application in 12 selected low-Zn genotypes showed wide variation in root uptake and shoot translocation,with genotypes GEC331 and GEC164 showing greater uptake and translocation.Genotypes GEC164 and GEC543 showed increased grain Zn concentration.Genotypes GEC331 and GEC164 also showed improved yield under Zn treatment.Appreciable variation in grain Zn concentration among finger millet genotypes found in this study offers opportunities to improve Zn nutrition through breeding.
文摘Many biodynamic models have been derived using trial and error curve-fitting technique, such that the error between the computed and measured biodynamic response functions is minimum. This study developed a biomechanical model of the human body in a sitting posture without backrest for evaluating the vibration transmissibility and dynamic response to vertical vibration direction. In describing the human body motion, a three biomechanical models are discussed (two models are 4-DOF and one model 7-DOF). Optimization software based on stochastic techniques search methods, Genetic Algorithms (GAs), is employed to determine the human model parameters imposing some limit constraints on the model parameters. In addition, an objective function is formulated comprising the sum of errors between the computed and actual values (experimental data). The studied functions are the driving-point mechanical impedance, apparent mass and seat- to-head transmissibility functions. The optimization process increased the average goodness of fit and the results of studied functions became much closer to the target values (Experimental data). From the optimized model, the resonant frequencies of the driver parts computed on the basis of biodynamic response functions are found to be within close bounds to that expected for the human body.
基金supported by grants 15-04-07527(AAR) and 16-34-60101(YOM) from Russian Foundation for Basic Researchsupported by a Presidential Grant for government support of young scientists(PhD) from the Russian Federation(MK-4020.2015.7)+1 种基金performed in accordance with Program of Competitive Growth of Kazan Federal Universitya subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities
文摘Spinal cord injury (SCI) continues to be a pressing health and social problem. The injury leads to neuronal and glial cell death accompanied by degeneration of nerve fibers. There are currently no particularly effective treatments. SCI causes profound disabil- ity of people affected and has attracted increased attention in the international field of neuroregeneration. For the past two decades, much hope has been placed in cell therapies for the restoration of both structure and function of the injured spinal cord. Embryonic and neural stem cells, olfactory ensheathing cells, microglia-like cells, Schwann cells, mesenchymal stem cells.
文摘The ability to introduce precise genomic modifications in human cells has profound implications for both basic and applied research in stem cells, ranging from identification of genes regulating stem cell self-renewal and multilineage differentiation to therapeutic gene correction and creation of in vitro models of human diseases. However, the overall efficiency of this process is challenged by several factors including inefficient gene delivery into stem cells and low rates of homology directed site-specific targeting. Recent studies report the development of novel techniques to improve gene targeting efficiencies in human stem cells; these methods include molecular engineering of viral vectors to efficiently deliver episomal genetic sequences that can participate in homology directed targeting, as well as the design of synthetic proteins that can introduce double-stranded breaks in DNA to initiate such recombination events. This review focuses on the potential of these new technologies to precisely alter the human stem cell genome and also highlights the possibilities offered by the combination of these complementary strategies.
基金the DAAD (German academic exchange service) for providing funds to support collection of samples in Nigeria
文摘Mansonia altissima is an important West African timber tree species. For the purpose of examining the effect of human impact on its genetic diversity, genetic diversity and spatial genetic structure of the species under different regimes of human impact were investigated in the Akure Forest Reserve, Nigeria, using 504 amplified fragment length polymorphism (AFLP) markers. The results indicate a very low genetic diversity in M. altissima within the forest reserve (He = 0.045; PPL = 16.75%; Br = 1.162). The highest genetic diversity was observed in the primary forest (H e= 0.062; PPL - 21.00%; Br = 1.204), with the lowest genetic diversity in the isolated forest patch (He = 0.032; PPL = 9.00%; B r= 1.089). A significant and pronounced spatial genetic structure was found in the logged forest and in the isolated forest patch. In contrast, the primary forest exhibited very weak spatial genetic structuring. As expected, no spatial genetic structure was found in the planted stands of M. altissima. From a conservation point of view, our results suggest that genetic diversity ofM. altissima is at risk in the forest reserve. The scale of human impact in the study area could pose a serious threat to the maintenance of genetic diversity of the species. These results would offer practical applications in the conservation of other tropical tree species.
文摘The purpose of this essay is to argue that the genetic engineering may bring about benefits to human health and the environment.By means of research of secondary source collection,relevant evidence is selected,evaluated and organized into three main parts:improving agricultural environment,providing effective medical therapy and supplying safe and nutrition food to human body.In order to explain the benefits that created by genetic engineering technologies,examples based on opinions of experts and results of experts' experiments are used.The research results strongly suggest that the genetic engineering has positive effects on environment and mankind.Base on those finds,the argument is justified that genetic engineering is certainly beneficial to the environment and human health.In the future,more attention and researches should be focus on the genetic engineering with the purpose of benefiting human beings and the natural worlds.
文摘The highest-level interference essence against virus and turnour genetic engineering medicine is a new type created in the 1980s. Compared with chemical medicines, the interference essence has a special effect in the treatment of viruses and tumours. The human a, type genetic engineering interference essense is prepared by the Institute of Viruses of the Chinese Academy of Preventive Medical Sciences, the Shanghai Vaccine
文摘Objective:To compare embryonic development,ploidy status and clinical outcomes between fresh and frozen-thawed oocytes.Methods:This retrospective cohort study evaluated 83 fertilization cycles including both fresh and frozen oocytes from 79 patients at the HP Fertility Center of Hai Phong International Hospital of Obstetrics and Pediatrics in Vietnam.The patient underwent several ovarian stimulation cycles to accumulate a certain number of oocytes that would be vitrified.In the last oocyte retrieval,all patient’s oocytes including both frozen and fresh would be fertilized.The outcomes included the rates of oocyte survival,cleavage embryo,blastocyst,ploidy status,pregnancy,biochemical pregnancy and clinical pregnancy.Results:The oocyte survival rate after thawing was 96.5%.No statistically significant difference was found when comparing fresh and frozen oocytes regarding fertilization rate(78.1%vs.75.5%,P=0.461),usable cleavage embryo rate(86.9%vs.87.2%,P=0.916)but usable blastocyst rate was found higher statistically in the frozen oocyte group(44.4%vs.54.0%,P=0.049).The percentages of euploid,aneuploid and mosaic embryos between the fresh group and the vitrified group had no significant differences(33.8%vs.31.6%,P=0.682;51.0%vs.54.2%,P=0.569;15.2%vs.12.4%,P=0.787;respectively).The rates of pregnancy,biochemical pregnancy and clinical pregnancy had no statistical difference(68.8%vs.64.8%,P=0.764;12.5%vs.3.6%,P=0.258;37.5%vs.46.4%,P=0.565).17 Mature oocytes are the minimum to have at least one euploid embryo.Conclusions:Oocyte vitrification does not affect embryonic,genetic and clinical results.The number of mature oocytes should be considered for fertilization in some cases.
文摘目的探讨人类白细胞抗原(human leukocyte antigen,HLA)基因多态性与乙型肝炎病毒(HBV)感染的相关性。方法收集云南省昆明市延安医院健康体检者静脉血样本501例,采用酶联免疫吸附试验(ELISA)检测HBV二对半,根据HBV二对半检测结果分为HBV携带组和既往感染组以及健康对照组3组,用序列特异性引物聚合酶链反应(polymerase chain reaction with sequence specific primers,PCR-SSP)基因分型技术检测HLA-A抗原的基因型,将HBV携带组和健康对照组以及HBV既往感染组和健康对照组的HLA-A基因多态性的分布频率进行比较。采用SPSS17.0软件进行数据统计分析。结果健康对照组HLA-A2阳性数占比47.49%,等位基因频率数占比31.29%;健康对照组基因分布频率总体与中华骨髓库发布的中国常见及确认的HLA-A等位基因表一致。HBV携带组HLA-A2阳性数占比63.04%,等位基因频率数占比42.23%,携带者的HLA-A2阳性率和等位基因频率差异有统计学意义(P<0.05);HBV既往感染组HLA-A2阳性数占比56.14%,等位基因频率数占比35.97%,既往感染组的HLA-A2阳性率和等位基因频率差异无统计学意义(P>0.05)。结论HLA-A2基因可能是慢性乙型肝炎HBV携带者的易感基因。