BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM...BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.展开更多
Aim: To investigate the possible functions of human sperm membrane protein (hSMP-1) in the process of fertilization. Methods: A 576-bp cDNA fragment of HSD-1 gene coding for the extracellular domain of hSMP-1 was ...Aim: To investigate the possible functions of human sperm membrane protein (hSMP-1) in the process of fertilization. Methods: A 576-bp cDNA fragment of HSD-1 gene coding for the extracellular domain of hSMP-1 was cloned and expressed. The localization of this protein on human and mouse sperm was determined by indirect immunofluorescent staining by using anti-recombinant hSMP-1 (anti-rhSMP-1) antibodies. Sperm acrosome reaction and spermzona pellucida (ZP) binding assay were carried out in 10-week-old BALB/c mice. Results: Recombinant hSMP-1 was successfully cloned and expressed. The expression of the native protein was limited on the acrosome of human and mouse sperm. Treatment of anti-rhSMP-1 antibodies significantly decreased the average number of sperms bound to each egg. Meanwhile, the percentage of acrosome reaction was decreased in comparison to pre-immune control after treatment with anti-rhSMP-1 (P 〈 0.05). Conclusion: The results suggest that anti-rhSMP-1 antibody inhibited mouse acrosome reaction and sperm-ZP binding.展开更多
Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitativ...Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).展开更多
The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the poss...The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.展开更多
BACKGROUND Spermatogonial stem cells(SSCs)are the origin of male spermatogenesis,which can reconstruct germ cell lineage in mice.However,the application of SSCs for male fertility restoration is hindered due to the un...BACKGROUND Spermatogonial stem cells(SSCs)are the origin of male spermatogenesis,which can reconstruct germ cell lineage in mice.However,the application of SSCs for male fertility restoration is hindered due to the unclear mechanisms of proliferation and self-renewal in humans.AIM To investigate the role and mechanism of SPOC domain-containing protein 1(SPOCD1)in human SSC proliferation.METHODS We analyzed publicly available human testis single-cell RNA sequencing(RNAseq)data and found that SPOCD1 is predominantly expressed in SSCs in the early developmental stages.Small interfering RNA was applied to suppress SPOCD1 expression to detect the impacts of SPOCD1 inhibition on SSC proliferation and apoptosis.Subsequently,we explored the target genes of SPOCD1 using RNA-seq and confirmed their role by restoring the expression of the target genes.In addition,we examined SPOCD1 expression in some non-obstructive azoospermia(NOA)patients to explore the correlation between SPOCD1 and NOA.RESULTS The uniform manifold approximation and projection clustering and pseudotime analysis showed that SPOCD1 was highly expressed in the early stages of SSC,and immunohistological results showed that SPOCD1 was mainly localized in glial cell line-derived neurotrophic factor family receptor alpha-1 positive SSCs.SPOCD1 knockdown significantly inhibited cell proliferation and promoted apoptosis.RNA-seq results showed that SPOCD1 knockdown significantly downregulated genes such as adenylate kinase 4(AK4).Overexpression of AK4 in SPOCD1 knockdown cells partially reversed the phenotypic changes,indicating that AK4 is a functional target gene of SPOCD1.In addition,we found a significant downregulation of SPOCD1 expression in some NOA patients,suggesting that the downregulation of SPOCD1 may be relevant for NOA.CONCLUSION Our study broadens the understanding of human SSC fate determination and may offer new theories on the etiology of male infertility.展开更多
Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural dif...Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural differentiation remains unclear.We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells.Moreover,RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation,and positively correlated with the neural stem cell marker Nestin during later stages.Thus,ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.展开更多
目的:研究抗肿瘤靶点人MutT同源体1蛋白(Human MutT Homolog-1,MTH1)抑制剂的构效关系,构建药效团筛选模型筛选潜在的MTH1抑制剂。方法:采用计算机辅助药物设计方法,通过Discovery Studio 3.0软件包中分子共同特征药效团HipHop算法,使...目的:研究抗肿瘤靶点人MutT同源体1蛋白(Human MutT Homolog-1,MTH1)抑制剂的构效关系,构建药效团筛选模型筛选潜在的MTH1抑制剂。方法:采用计算机辅助药物设计方法,通过Discovery Studio 3.0软件包中分子共同特征药效团HipHop算法,使用14个已知MTH1抑制剂分子作为训练集构建药效团模型,并通过Decoy Set验证准确性。结果:获得富集率为13.1的HipHop药效团模型,通过分子对接验证虚拟筛选出的75个候选化合物,得到先导化合物GK01945和HTS07767,能与受体形成良好的相互作用。结论:构建的药效团模型可以作为筛选模型,筛选出的MTH1潜在抑制剂,为抗肿瘤药物MTH1抑制剂开发提供了新思路。展开更多
基金This study was reviewed and approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Guangxi Medical University(Approval No.2023-E386-01).
文摘BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.
文摘Aim: To investigate the possible functions of human sperm membrane protein (hSMP-1) in the process of fertilization. Methods: A 576-bp cDNA fragment of HSD-1 gene coding for the extracellular domain of hSMP-1 was cloned and expressed. The localization of this protein on human and mouse sperm was determined by indirect immunofluorescent staining by using anti-recombinant hSMP-1 (anti-rhSMP-1) antibodies. Sperm acrosome reaction and spermzona pellucida (ZP) binding assay were carried out in 10-week-old BALB/c mice. Results: Recombinant hSMP-1 was successfully cloned and expressed. The expression of the native protein was limited on the acrosome of human and mouse sperm. Treatment of anti-rhSMP-1 antibodies significantly decreased the average number of sperms bound to each egg. Meanwhile, the percentage of acrosome reaction was decreased in comparison to pre-immune control after treatment with anti-rhSMP-1 (P 〈 0.05). Conclusion: The results suggest that anti-rhSMP-1 antibody inhibited mouse acrosome reaction and sperm-ZP binding.
文摘Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).
文摘The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.
基金the National Natural Science Foundation for Young Scholars of China,No.82201771National Natural Science Foundation of China,No.32270912+2 种基金Natural Science Foundation of Changsha,No.kq2202491Research Grant of CITIC-Xiangya,No.YNXM202109 and No.YNXM202115Hunan Provincial Grant for Innovative Province Construction,No.2019SK4012。
文摘BACKGROUND Spermatogonial stem cells(SSCs)are the origin of male spermatogenesis,which can reconstruct germ cell lineage in mice.However,the application of SSCs for male fertility restoration is hindered due to the unclear mechanisms of proliferation and self-renewal in humans.AIM To investigate the role and mechanism of SPOC domain-containing protein 1(SPOCD1)in human SSC proliferation.METHODS We analyzed publicly available human testis single-cell RNA sequencing(RNAseq)data and found that SPOCD1 is predominantly expressed in SSCs in the early developmental stages.Small interfering RNA was applied to suppress SPOCD1 expression to detect the impacts of SPOCD1 inhibition on SSC proliferation and apoptosis.Subsequently,we explored the target genes of SPOCD1 using RNA-seq and confirmed their role by restoring the expression of the target genes.In addition,we examined SPOCD1 expression in some non-obstructive azoospermia(NOA)patients to explore the correlation between SPOCD1 and NOA.RESULTS The uniform manifold approximation and projection clustering and pseudotime analysis showed that SPOCD1 was highly expressed in the early stages of SSC,and immunohistological results showed that SPOCD1 was mainly localized in glial cell line-derived neurotrophic factor family receptor alpha-1 positive SSCs.SPOCD1 knockdown significantly inhibited cell proliferation and promoted apoptosis.RNA-seq results showed that SPOCD1 knockdown significantly downregulated genes such as adenylate kinase 4(AK4).Overexpression of AK4 in SPOCD1 knockdown cells partially reversed the phenotypic changes,indicating that AK4 is a functional target gene of SPOCD1.In addition,we found a significant downregulation of SPOCD1 expression in some NOA patients,suggesting that the downregulation of SPOCD1 may be relevant for NOA.CONCLUSION Our study broadens the understanding of human SSC fate determination and may offer new theories on the etiology of male infertility.
基金supported by the National Natural Science Foundation of China,No.31340024
文摘Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural differentiation remains unclear.We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells.Moreover,RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation,and positively correlated with the neural stem cell marker Nestin during later stages.Thus,ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.