This research introduces a groundbreaking methodology aimed at mitigating storm and hurricane intensity through the application of a ground-based, manually operated Cloud Condensation Nuclei (CCN) Generator. To meet t...This research introduces a groundbreaking methodology aimed at mitigating storm and hurricane intensity through the application of a ground-based, manually operated Cloud Condensation Nuclei (CCN) Generator. To meet the demand for more comprehensive context and rationale, this study explores the escalating challenges presented by the growing intensity of hurricanes, exemplified by Hurricane IAN (2022). The controlled release of environmentally friendly aerosols into the atmosphere, achieved by combusting selected wood pieces and organic edible materials, is a pivotal response to the escalating threat of extreme weather events. By generating CCN, the novel approach seeks to augment positive lightning in the eyewall, providing a potential solution to the intensification of hurricanes. Results illustrate the successful implementation of the methodology, with released aerosols effectively reaching the clouds for seeding, thus contributing to the modification of convection in the outer wall of Hurricane IAN and consequent intensity reduction. Rigorous experiments, incorporating considerations of various parameters such as wind patterns and the experimental location in Sarasota City, emphasize the scientific rigor applied to weakening Hurricane IAN. This comprehensive approach not only holds promise in mitigating hurricane intensity but also sheds light on the potential impact of cloud seeding in reducing the severity of future hurricanes, addressing a critical need for sustainable solutions to climate-related challenges.展开更多
The purpose of this qualitative study is to explore and gain an understanding of Louisiana homeowners’ perceptions and practices in preparing for hurricanes;contribute to academic research and student learning, while...The purpose of this qualitative study is to explore and gain an understanding of Louisiana homeowners’ perceptions and practices in preparing for hurricanes;contribute to academic research and student learning, while guiding the development of future projects. We focused specifically on how homeowners in Louisiana would protect their important documents and possessions. These documents and possessions include but are not limited to photographs, social security cards, birth certificates, and insurance paperwork. We collected the data throughout the fall semester of 2022 at Louisiana State University (LSU) by conducting a focus group and in-depth interviews. We collected a variety of answers, but most participants expressed a strong need to have their important documents and possessions protected and gave different strategies for how this was carried out, such as digitizing or protective storage. Participants also expressed a strong need for more information to be delivered to residents to talk more about ways they can protect their own documents and possessions. Emphases were also made on the need for: leaders of large institutions to be especially concerned with preparedness for vulnerable populations;outreach programs to be put in place to spread awareness of the importance of protecting important documents and possessions during a disaster;news outlets to switch their focus from normal survival tips to discussions on the importance of protecting documents and possessions;government and non-profit agencies to work together to share tips and information through social media and other forms of handouts.展开更多
Every year, hurricanes pose a serious threat to coastal communities, and forecasting their maximum intensities has been a crucial task for scientists. Computational methods have been used to forecast the intensities o...Every year, hurricanes pose a serious threat to coastal communities, and forecasting their maximum intensities has been a crucial task for scientists. Computational methods have been used to forecast the intensities of hurricanes across varying time horizons. However, as climate change has increased the volatility of the intensities of recent hurricanes, newer and adaptable methods must be devised. In this study, a framework is proposed to estimate the maximum intensity of tropical cyclones (TCs) in the Atlantic Ocean using a multi-input convolutional neural network (CNN). From the Atlantic hurricane seasons of 2000 through 2021, over 100 TCs that reached hurricane-level wind speeds are used. Novel algorithms are used to collect and preprocess both satellite image data and non-image data for these TCs. Namely, Discrete Wavelet Transforms (DWTs) are used to decompose individual bands of satellite image data, eliminating noise and extracting hidden frequency details before training. Validation tests indicate that this framework can estimate the maximum wind speed of TCs with a root mean square error of 15 knots. This framework provides preliminary predictions that can supplement current computational methods that would otherwise not be able to account for climate change. Future work can be done by forecasting with time constraints, and to provide estimations for more metrics such as pressure and precipitation.展开更多
A rapid environmental assessment was conducted by the staff of Marine Biology Research Center (CIBIMA), Faculty of Sciences, Universidad Aut6noma de Santo Domingo (UASD) on the southern coast of the Dominican Repu...A rapid environmental assessment was conducted by the staff of Marine Biology Research Center (CIBIMA), Faculty of Sciences, Universidad Aut6noma de Santo Domingo (UASD) on the southern coast of the Dominican Republic, to evaluate the effects of the hurricane Matthew on October 3, being the 14th storm of the year 2016 for the Caribbean region. The observations were carried out two weeks after the storm hit. These observations included coastal ecosystems, such as marshes, beaches, lagoons, wetlands, mangrove forests, nearshore sea grasses and coral reefs. The evaluation included observations on the magnitude of the distresses and levels of destruction---changes, produced by the intense weather and upset climate from the storm. The data gathered were recorded following a categorization of impacts. It also included a description of the different coastal communities after being impacted and affected by the storm.展开更多
This article provides a reckoning of the 2017 Atlantic Hurricane Season’s place in history to ascertain how unique it was from other hurricane seasons. A research strategy involving qualitative, descriptive and analy...This article provides a reckoning of the 2017 Atlantic Hurricane Season’s place in history to ascertain how unique it was from other hurricane seasons. A research strategy involving qualitative, descriptive and analytical research approaches, including content analysis, sequential description of events and comparative analysis, were used to assess how and why the 2017 AHS season is distinct from others. Findings reveal that the 2017 AHS was extraordinary by all meteorological standards—in many ways, being hyperactive, and producing a frenetic stretch of huge, long-lived and dramatic, tropical storms including 10 hurricanes. The season was, arguably, the most expensive in history and will be remembered for the unprecedented devastation caused by the season’s major hurricanes (Harvey, Irma and Maria). While the extremely active season can be attributed to anomalously high, climate change induced, hurricane friendly environmental conditions in the Atlantic basin, early forecasts did not also predict the hyperactivity of the season. This article, therefore, advances for a more strategic anticipatory and proactive approach in dealing with these severe storms, underpinned by effective mitigation of their effects. Furthermore, the article adds value to the literature examining extreme natural forces, particularly in understanding variations in the ferocity of the meteorological events associated with hurricane seasons.展开更多
Jeremy Harmer的ESA理论中提出了英语教学中的三要素,且阐释了三要素下的三种课型模式。该文是在ESA理论的杂拼模式(patchwork sequence)的指导下,结合《高级英语》中的课文Face to Face with Hurricane Camille,在教学中进行了一次尝试...Jeremy Harmer的ESA理论中提出了英语教学中的三要素,且阐释了三要素下的三种课型模式。该文是在ESA理论的杂拼模式(patchwork sequence)的指导下,结合《高级英语》中的课文Face to Face with Hurricane Camille,在教学中进行了一次尝试,进一步发现了ESA在课堂教学中的积极作用。展开更多
The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind...The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Offthe shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated offthe shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s^-, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s^-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that ialf frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline. Offthe shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1.035fin the mixed layer to 1.02fin the thermocline, implying a trend for the shift in frequency of the oscillations towards f with the depth.展开更多
The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought ...The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought a severe catastrophe in New Orleans by combined effects of hurricane induced extreme sea environments and upper flood of the Mississippi River. Like the New Orleans City, Shanghai is located at the estuarine area of the Changjiang River and the combined effect of typhoon induced extreme sea en- vironments, flood peak runoff from the Changjiang River coupled with the spring tide is the dominate factor for disaster prevention design criteria. The Poisson-nested logistic trivariate compound extreme value distribution (PNLTCEYD) is a new type of joint probability model which is proposed by compounding a discrete distribution (typhoon occurring frequency) into a continuous multivariate joint distribution ( typhoon induced extreme events). The new model gives more reasonable predicted results for New Orleans and Shanghai disaster prevention design criteria.展开更多
The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are perfo...The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3℃, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1℃ change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.展开更多
In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are stud...In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.展开更多
The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote...The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.展开更多
Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temper...Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.展开更多
Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)sig...Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.展开更多
Numerical experiments were conducted using the finite volume community ocean model(FVCOM) to study the impact of the initial density stratification on simulated currents over the Louisiana shelf during Hurricane Katri...Numerical experiments were conducted using the finite volume community ocean model(FVCOM) to study the impact of the initial density stratification on simulated currents over the Louisiana shelf during Hurricane Katrina. Model results for two simulation scenarios, including an initially stratified shelf and an initially non-stratified shelf, were examined. Comparison of two simulations for two-dimensional(2D) currents,the time series of current speed, and variations of cross-shore currents across different sections showed that the smallest differences between simulated currents for these two scenarios occurred over highly mixed regions within 1 radius of maximum wind(RMW) under the hurricane.For areas farther from the mixed zone, differences increased, reaching the maximum values off Terrebonne Bay. These large discrepancies correspond to significant differences between calculated vertical eddy viscosities for the two scenarios. The differences were addressed based on the contradictory behavior of turbulence in a stratified fluid, as compared to a non-stratified fluid. Incorporation of this behavior in the MellorYamada turbulent closure model established a Richardson number-based stability function that was used for estimation of the vertical eddy viscosity from the turbulent energy and macroscale. The results of this study demonstrate the necessity for inclusion of shelf stratification when circulation modeling is conducted using three-dimensional(3D) baroclinic models. To achieve high-accuracy currents, the parameters associated with the turbulence closures should be calibrated with field measurements of currents at different depths.展开更多
Hurricanes Katrina and Rita resulted in the largest number of platforms destroyed and damaged in the history of Gulf of Mexico operations. With the trend of global warming, sea level rising and the frequency and inten...Hurricanes Katrina and Rita resulted in the largest number of platforms destroyed and damaged in the history of Gulf of Mexico operations. With the trend of global warming, sea level rising and the frequency and intensity of typhoon increase. How to determine a reasonable deck elevation against the largest hurricane waves has become a key issue in offshore platforms design and construction for the unification of economy and safety. In this paper, the multivariate compound extreme value distribution (MCEVD) model is used to predict the deck elevation with different combination of tide, surge height, and crest height. Compared with practice recommended by American Petroleum Institute (API), the prediction by MCEVD has probabilistic meaning and universality.展开更多
To examine the zonal asymmetry of the Antarctic oscillation (AAO), different portions of the AAO from June to October (JJASO) in the interannual variability of the Atlantic tropical hurricanes number (ATHN) are docume...To examine the zonal asymmetry of the Antarctic oscillation (AAO), different portions of the AAO from June to October (JJASO) in the interannual variability of the Atlantic tropical hurricanes number (ATHN) are documented in this research. It follows that the AAO in the Western Hemisphere (AAOWH) is positively correlated with the ATHN, at 0.36 during the period of 1871-1998 and 0.42 during the period of 1949-98. After removing the linear regressions on the Southern Oscillation Index (SOI) in all time series, the above correlation coefficients are 0.25 and 0.30, respectively. The underlying mechanisms are studied through analyses of the atmospheric general circulation variability associated with the AAOWH. It turns out that the positive (negative) phase of JJASO AAOWH corresponds with several factors: decreased (increased) vertical zonal wind shear magnitude, low-level anomalous convergence (divergence), high-level anomalous divergence (convergence), and warmed (cooled) sea surface temperature in the tropical Atlantic. Therefore, the positive (negative) phase of JJASO AAOWH is favorable (unfavorable) to the tropical hurricane genesis.展开更多
Hurricanes cause abrupt carbon reduction in forests, but silviculture treatment can be an effective means of quickly regenerating and restoring hurricane-damaged sites. This study assessed how silviculture treatments ...Hurricanes cause abrupt carbon reduction in forests, but silviculture treatment can be an effective means of quickly regenerating and restoring hurricane-damaged sites. This study assessed how silviculture treatments affect carbon balance after hurricane damage in central Hokkaido, Japan. We examined carbon storage in trees and underground vegetation as well as carbon emissions from silviculture operations in 25-year-old stands, where scarification and plantation occurred just after hurricane damage. The amount of carbon stored varied according to silviculture treatment. Among three scarification treatments, a scarified depth of 0 cm (understory vegetation removal) led to the largest amount of carbon stored (64.7 t·ha^-1 C). Among four plantation treatments, the largest amount of carbon was stored in a Larix hybrid (L. gmelinii var. japonica × L. kaempferi) plantation (80.3 t·ha^-1 C). The plantation of Abies sachalinensis was not successful at accumulating carbon (40.5·ha^-1 C). The amount of carbon emitted from silviculture operations was 0.05-0.14 t·ha^-1 C, and it marginally affected the net carbon balance of the silviculture project. Results indicate that silviculture treatments should beperformed in an appropriate way to effectively recover the ability of carbon sequestration in hurricane-damaged forests.展开更多
Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep...Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.展开更多
The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. Thi...The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. This paper shows that extra non-real-time data (dropsonde data) can improve hurricane track forecasts compared with real-time observational data, and that the wind and relative humidity components of the dropsonde data have the greatest impact on the track forecasts.展开更多
Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the so...Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.展开更多
文摘This research introduces a groundbreaking methodology aimed at mitigating storm and hurricane intensity through the application of a ground-based, manually operated Cloud Condensation Nuclei (CCN) Generator. To meet the demand for more comprehensive context and rationale, this study explores the escalating challenges presented by the growing intensity of hurricanes, exemplified by Hurricane IAN (2022). The controlled release of environmentally friendly aerosols into the atmosphere, achieved by combusting selected wood pieces and organic edible materials, is a pivotal response to the escalating threat of extreme weather events. By generating CCN, the novel approach seeks to augment positive lightning in the eyewall, providing a potential solution to the intensification of hurricanes. Results illustrate the successful implementation of the methodology, with released aerosols effectively reaching the clouds for seeding, thus contributing to the modification of convection in the outer wall of Hurricane IAN and consequent intensity reduction. Rigorous experiments, incorporating considerations of various parameters such as wind patterns and the experimental location in Sarasota City, emphasize the scientific rigor applied to weakening Hurricane IAN. This comprehensive approach not only holds promise in mitigating hurricane intensity but also sheds light on the potential impact of cloud seeding in reducing the severity of future hurricanes, addressing a critical need for sustainable solutions to climate-related challenges.
文摘The purpose of this qualitative study is to explore and gain an understanding of Louisiana homeowners’ perceptions and practices in preparing for hurricanes;contribute to academic research and student learning, while guiding the development of future projects. We focused specifically on how homeowners in Louisiana would protect their important documents and possessions. These documents and possessions include but are not limited to photographs, social security cards, birth certificates, and insurance paperwork. We collected the data throughout the fall semester of 2022 at Louisiana State University (LSU) by conducting a focus group and in-depth interviews. We collected a variety of answers, but most participants expressed a strong need to have their important documents and possessions protected and gave different strategies for how this was carried out, such as digitizing or protective storage. Participants also expressed a strong need for more information to be delivered to residents to talk more about ways they can protect their own documents and possessions. Emphases were also made on the need for: leaders of large institutions to be especially concerned with preparedness for vulnerable populations;outreach programs to be put in place to spread awareness of the importance of protecting important documents and possessions during a disaster;news outlets to switch their focus from normal survival tips to discussions on the importance of protecting documents and possessions;government and non-profit agencies to work together to share tips and information through social media and other forms of handouts.
文摘Every year, hurricanes pose a serious threat to coastal communities, and forecasting their maximum intensities has been a crucial task for scientists. Computational methods have been used to forecast the intensities of hurricanes across varying time horizons. However, as climate change has increased the volatility of the intensities of recent hurricanes, newer and adaptable methods must be devised. In this study, a framework is proposed to estimate the maximum intensity of tropical cyclones (TCs) in the Atlantic Ocean using a multi-input convolutional neural network (CNN). From the Atlantic hurricane seasons of 2000 through 2021, over 100 TCs that reached hurricane-level wind speeds are used. Novel algorithms are used to collect and preprocess both satellite image data and non-image data for these TCs. Namely, Discrete Wavelet Transforms (DWTs) are used to decompose individual bands of satellite image data, eliminating noise and extracting hidden frequency details before training. Validation tests indicate that this framework can estimate the maximum wind speed of TCs with a root mean square error of 15 knots. This framework provides preliminary predictions that can supplement current computational methods that would otherwise not be able to account for climate change. Future work can be done by forecasting with time constraints, and to provide estimations for more metrics such as pressure and precipitation.
文摘A rapid environmental assessment was conducted by the staff of Marine Biology Research Center (CIBIMA), Faculty of Sciences, Universidad Aut6noma de Santo Domingo (UASD) on the southern coast of the Dominican Republic, to evaluate the effects of the hurricane Matthew on October 3, being the 14th storm of the year 2016 for the Caribbean region. The observations were carried out two weeks after the storm hit. These observations included coastal ecosystems, such as marshes, beaches, lagoons, wetlands, mangrove forests, nearshore sea grasses and coral reefs. The evaluation included observations on the magnitude of the distresses and levels of destruction---changes, produced by the intense weather and upset climate from the storm. The data gathered were recorded following a categorization of impacts. It also included a description of the different coastal communities after being impacted and affected by the storm.
文摘This article provides a reckoning of the 2017 Atlantic Hurricane Season’s place in history to ascertain how unique it was from other hurricane seasons. A research strategy involving qualitative, descriptive and analytical research approaches, including content analysis, sequential description of events and comparative analysis, were used to assess how and why the 2017 AHS season is distinct from others. Findings reveal that the 2017 AHS was extraordinary by all meteorological standards—in many ways, being hyperactive, and producing a frenetic stretch of huge, long-lived and dramatic, tropical storms including 10 hurricanes. The season was, arguably, the most expensive in history and will be remembered for the unprecedented devastation caused by the season’s major hurricanes (Harvey, Irma and Maria). While the extremely active season can be attributed to anomalously high, climate change induced, hurricane friendly environmental conditions in the Atlantic basin, early forecasts did not also predict the hyperactivity of the season. This article, therefore, advances for a more strategic anticipatory and proactive approach in dealing with these severe storms, underpinned by effective mitigation of their effects. Furthermore, the article adds value to the literature examining extreme natural forces, particularly in understanding variations in the ferocity of the meteorological events associated with hurricane seasons.
文摘Jeremy Harmer的ESA理论中提出了英语教学中的三要素,且阐释了三要素下的三种课型模式。该文是在ESA理论的杂拼模式(patchwork sequence)的指导下,结合《高级英语》中的课文Face to Face with Hurricane Camille,在教学中进行了一次尝试,进一步发现了ESA在课堂教学中的积极作用。
文摘The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Offthe shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated offthe shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s^-, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s^-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that ialf frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline. Offthe shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1.035fin the mixed layer to 1.02fin the thermocline, implying a trend for the shift in frequency of the oscillations towards f with the depth.
基金supported by the National Natural Science Foundation of China under contract No.50379051.
文摘The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought a severe catastrophe in New Orleans by combined effects of hurricane induced extreme sea environments and upper flood of the Mississippi River. Like the New Orleans City, Shanghai is located at the estuarine area of the Changjiang River and the combined effect of typhoon induced extreme sea en- vironments, flood peak runoff from the Changjiang River coupled with the spring tide is the dominate factor for disaster prevention design criteria. The Poisson-nested logistic trivariate compound extreme value distribution (PNLTCEYD) is a new type of joint probability model which is proposed by compounding a discrete distribution (typhoon occurring frequency) into a continuous multivariate joint distribution ( typhoon induced extreme events). The new model gives more reasonable predicted results for New Orleans and Shanghai disaster prevention design criteria.
文摘The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3℃, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1℃ change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.
文摘In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)
文摘The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.
基金supported by the National Natural Science Foundation of China (Grant No. 41305089)the National Oceanic and Atmospheric Administration (Grant No. NA10NES4400013)the Public Industry-specific Fund for Meteorology (Grant No. GYHY201406011)
文摘Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.
基金The National Natural Science Foundation of China under contract No.41371355the Director Fund Project of Institute of Remote Sensing and Digital Earth of CAS under contract No.Y6SJ0600CX
文摘Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.
基金supported by grants from Louisiana's Coastal Protection and Restoration Authority(CPRA)the Stennis Space Center,the Lake Pontchartrain Basin Foundation,the National Science Foundation(Grants No.OCE-0554674,DEB-0833225,OCE-1140268,and OCE-1140307)+2 种基金the Hypoxia Project of NOAA(Grant No.NA06NPS4780197)the Shanghai Universities First-Class Disciplines Projectthe Shanghai Ocean University International Center for Marine Studies
文摘Numerical experiments were conducted using the finite volume community ocean model(FVCOM) to study the impact of the initial density stratification on simulated currents over the Louisiana shelf during Hurricane Katrina. Model results for two simulation scenarios, including an initially stratified shelf and an initially non-stratified shelf, were examined. Comparison of two simulations for two-dimensional(2D) currents,the time series of current speed, and variations of cross-shore currents across different sections showed that the smallest differences between simulated currents for these two scenarios occurred over highly mixed regions within 1 radius of maximum wind(RMW) under the hurricane.For areas farther from the mixed zone, differences increased, reaching the maximum values off Terrebonne Bay. These large discrepancies correspond to significant differences between calculated vertical eddy viscosities for the two scenarios. The differences were addressed based on the contradictory behavior of turbulence in a stratified fluid, as compared to a non-stratified fluid. Incorporation of this behavior in the MellorYamada turbulent closure model established a Richardson number-based stability function that was used for estimation of the vertical eddy viscosity from the turbulent energy and macroscale. The results of this study demonstrate the necessity for inclusion of shelf stratification when circulation modeling is conducted using three-dimensional(3D) baroclinic models. To achieve high-accuracy currents, the parameters associated with the turbulence closures should be calibrated with field measurements of currents at different depths.
基金supported bythe National Natural Science Foundation of China (Grant No.51010009)
文摘Hurricanes Katrina and Rita resulted in the largest number of platforms destroyed and damaged in the history of Gulf of Mexico operations. With the trend of global warming, sea level rising and the frequency and intensity of typhoon increase. How to determine a reasonable deck elevation against the largest hurricane waves has become a key issue in offshore platforms design and construction for the unification of economy and safety. In this paper, the multivariate compound extreme value distribution (MCEVD) model is used to predict the deck elevation with different combination of tide, surge height, and crest height. Compared with practice recommended by American Petroleum Institute (API), the prediction by MCEVD has probabilistic meaning and universality.
基金supported by the National Natural Science Foundation of China, under Grant No. 40775049the Major State Basic Research Development Program of China (973 Program), under Grant No. 2009CB421406the IAP Key Innovation Programs IAP07117 and IAP09302
文摘To examine the zonal asymmetry of the Antarctic oscillation (AAO), different portions of the AAO from June to October (JJASO) in the interannual variability of the Atlantic tropical hurricanes number (ATHN) are documented in this research. It follows that the AAO in the Western Hemisphere (AAOWH) is positively correlated with the ATHN, at 0.36 during the period of 1871-1998 and 0.42 during the period of 1949-98. After removing the linear regressions on the Southern Oscillation Index (SOI) in all time series, the above correlation coefficients are 0.25 and 0.30, respectively. The underlying mechanisms are studied through analyses of the atmospheric general circulation variability associated with the AAOWH. It turns out that the positive (negative) phase of JJASO AAOWH corresponds with several factors: decreased (increased) vertical zonal wind shear magnitude, low-level anomalous convergence (divergence), high-level anomalous divergence (convergence), and warmed (cooled) sea surface temperature in the tropical Atlantic. Therefore, the positive (negative) phase of JJASO AAOWH is favorable (unfavorable) to the tropical hurricane genesis.
基金supported by the Alliance for Global Sustainability promotional office at the University of Tokyo
文摘Hurricanes cause abrupt carbon reduction in forests, but silviculture treatment can be an effective means of quickly regenerating and restoring hurricane-damaged sites. This study assessed how silviculture treatments affect carbon balance after hurricane damage in central Hokkaido, Japan. We examined carbon storage in trees and underground vegetation as well as carbon emissions from silviculture operations in 25-year-old stands, where scarification and plantation occurred just after hurricane damage. The amount of carbon stored varied according to silviculture treatment. Among three scarification treatments, a scarified depth of 0 cm (understory vegetation removal) led to the largest amount of carbon stored (64.7 t·ha^-1 C). Among four plantation treatments, the largest amount of carbon was stored in a Larix hybrid (L. gmelinii var. japonica × L. kaempferi) plantation (80.3 t·ha^-1 C). The plantation of Abies sachalinensis was not successful at accumulating carbon (40.5·ha^-1 C). The amount of carbon emitted from silviculture operations was 0.05-0.14 t·ha^-1 C, and it marginally affected the net carbon balance of the silviculture project. Results indicate that silviculture treatments should beperformed in an appropriate way to effectively recover the ability of carbon sequestration in hurricane-damaged forests.
基金The National Natural Science Foundation of China under contract No.50779015the National Key Technology R&D Program of China under contract No.2012BAB03B01
文摘Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.
文摘The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. This paper shows that extra non-real-time data (dropsonde data) can improve hurricane track forecasts compared with real-time observational data, and that the wind and relative humidity components of the dropsonde data have the greatest impact on the track forecasts.
基金supported by the US National Science Foundation(Grant No.AGS-1243027)Computer support from the Center for High-Performance Computing at the University of Utah is appreciatedhigh-performance computing support from Yellowstone(ark:/85065/d7wd3xhc),provided by NCAR’s Computational and Information Systems Laboratory and sponsored by the National Science Foundation,is also acknowledged
文摘Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.