To achieve high-quality image compression of a floral canopy,a region of interest(ROI)mask of the wavelet domain was generated through the automatic identification of the canopy ROI and lifting the bit-plane of the RO...To achieve high-quality image compression of a floral canopy,a region of interest(ROI)mask of the wavelet domain was generated through the automatic identification of the canopy ROI and lifting the bit-plane of the ROI to obtain priority of coding for the ROI-set partitioning in hierarchical trees(ROI-SPIHT)coding.The embedded zerotree wavelet(EZW)coding was conducted for the background(BG)region of the image and a relatively more low-frequency wavelet coefficient was obtained using a relatively small amount of coding.Through the weighing factor r of the ROI coding amount,the proportion of the ROI and BG coding amount was dynamically adjusted to generate embedded,truncatable bit streams.Despite the location of truncation,the image information and ROI mask information required by the decoder can be guaranteed to achieve high-quality compression and reconstruction of the image ROI.The results indicated that under the same bit rate,the larger the r value is,the larger the peak-signal-to-noise ratio(PSNR)for the ROI reconstructed image and the smaller the PSNR for the BG reconstructed image.In the range of 0.07-1.09 bpp,the PSNR of the ROI reconstructed image was 42.65%higher on average than that of the BG reconstructed image,43.95%higher on average than that of the composite image of the ROI and BG(ALL),and 16.84%higher on average than that of the standard SPIHT reconstructed image.Additionally,the mean square error of the quality evaluation index and similarity for the ROI reconstructed image were both better than those for the BG,ALL,and standard SPIHT reconstructed images.The texture distortion of the ALL image was smaller than that of the SPIHT reconstructed image,indicating that the image compression algorithm based on the mask hybrid coding for ROI(ROI-MHC)is capable of improving the reconstruction quality of an ROI image.When the weighing factor r is a fixed value,as the proportion of ROI(a)increases,the quality of ROI image reconstruction gradually decreases.Therefore,upon the application of the ROI-MHC image compression algorithm,high-quality reconstruction of the ROI image can be achieved through dynamically configuring r according to a.Under the same bit rate,the quality of the ROI-MHC image compression is higher than that of current compression algorithms of same classes and offers promising application opportunities.展开更多
A hybrid decoding algorithm is proposed for nonbinary low-density parity-check (LDPC) codes, which combines the weighted symbol-flipping (WSF) algorithm with the fast Fourier trans- form q-ary sum-product algorit...A hybrid decoding algorithm is proposed for nonbinary low-density parity-check (LDPC) codes, which combines the weighted symbol-flipping (WSF) algorithm with the fast Fourier trans- form q-ary sum-product algorithm (FFT-QSPA). The flipped position and value are determined by the symbol flipping metric and the received bit values in the first stage WSF algorithm. If the low- eomplexity WSF algorithm is failed, the second stage FFT-QSPA is activated as a switching strategy. Simulation results show that the proposed hybrid algorithm greatly reduces the computational complexity with the performance close to that of FFT-QSPA.展开更多
Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh ma...Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
Network coding mechanisms, such as COPE, can improve network throughput effectively in Wireless Mesh Networks(WMN). While the Hybrid Wireless Mesh Protocol(HWMP) is suitable for WMN, its extension with COPE does n...Network coding mechanisms, such as COPE, can improve network throughput effectively in Wireless Mesh Networks(WMN). While the Hybrid Wireless Mesh Protocol(HWMP) is suitable for WMN, its extension with COPE does not provide any added benefits; specifically, HWMP cannot establish paths with more coding opportunities. As a result, the advantages of network coding cannot be exploited sufficiently. This paper proposes improvements upon HWMP with a new, network Coding-Aware routing protocol(CAHWMP) for WMN. In the CAHWMP protocol, we propose a coding criterion based on data streams to devise an algorithm for actively detecting coding opportunities during path discovery. CAHWMP subsequently establishes paths using the codingaware routing metric, which can balance channel resource consumption and the gain due to sharing resources introduced by network coding. Simulation results show that CAHWMP can establish paths with more coding opportunities; as a result, it improves network performance such as network throughput.展开更多
基金support provided by the Natural Science Fundation of Jiangsu Province:Youth Fund(Grant No.BK20170727)the Fundamental Research Funds for the Central Universities(Grant No.KYGX201703)the Natural Science Fundation of Jiangsu Province:Youth Fund(Grant No.BK20150686).
文摘To achieve high-quality image compression of a floral canopy,a region of interest(ROI)mask of the wavelet domain was generated through the automatic identification of the canopy ROI and lifting the bit-plane of the ROI to obtain priority of coding for the ROI-set partitioning in hierarchical trees(ROI-SPIHT)coding.The embedded zerotree wavelet(EZW)coding was conducted for the background(BG)region of the image and a relatively more low-frequency wavelet coefficient was obtained using a relatively small amount of coding.Through the weighing factor r of the ROI coding amount,the proportion of the ROI and BG coding amount was dynamically adjusted to generate embedded,truncatable bit streams.Despite the location of truncation,the image information and ROI mask information required by the decoder can be guaranteed to achieve high-quality compression and reconstruction of the image ROI.The results indicated that under the same bit rate,the larger the r value is,the larger the peak-signal-to-noise ratio(PSNR)for the ROI reconstructed image and the smaller the PSNR for the BG reconstructed image.In the range of 0.07-1.09 bpp,the PSNR of the ROI reconstructed image was 42.65%higher on average than that of the BG reconstructed image,43.95%higher on average than that of the composite image of the ROI and BG(ALL),and 16.84%higher on average than that of the standard SPIHT reconstructed image.Additionally,the mean square error of the quality evaluation index and similarity for the ROI reconstructed image were both better than those for the BG,ALL,and standard SPIHT reconstructed images.The texture distortion of the ALL image was smaller than that of the SPIHT reconstructed image,indicating that the image compression algorithm based on the mask hybrid coding for ROI(ROI-MHC)is capable of improving the reconstruction quality of an ROI image.When the weighing factor r is a fixed value,as the proportion of ROI(a)increases,the quality of ROI image reconstruction gradually decreases.Therefore,upon the application of the ROI-MHC image compression algorithm,high-quality reconstruction of the ROI image can be achieved through dynamically configuring r according to a.Under the same bit rate,the quality of the ROI-MHC image compression is higher than that of current compression algorithms of same classes and offers promising application opportunities.
基金Supported by the National High Technology Research and Development Programme of China(No.2009AAJ128,2009AAJ208,2010AA7010422)
文摘A hybrid decoding algorithm is proposed for nonbinary low-density parity-check (LDPC) codes, which combines the weighted symbol-flipping (WSF) algorithm with the fast Fourier trans- form q-ary sum-product algorithm (FFT-QSPA). The flipped position and value are determined by the symbol flipping metric and the received bit values in the first stage WSF algorithm. If the low- eomplexity WSF algorithm is failed, the second stage FFT-QSPA is activated as a switching strategy. Simulation results show that the proposed hybrid algorithm greatly reduces the computational complexity with the performance close to that of FFT-QSPA.
基金supported by the National Natural Science Foundation of China(61371099)the Fundamental Research Funds for the Central Universities of China(HEUCF150812/150810)
文摘Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
基金supported by the National Natural Science Foundation of China (No. 61301110)
文摘Network coding mechanisms, such as COPE, can improve network throughput effectively in Wireless Mesh Networks(WMN). While the Hybrid Wireless Mesh Protocol(HWMP) is suitable for WMN, its extension with COPE does not provide any added benefits; specifically, HWMP cannot establish paths with more coding opportunities. As a result, the advantages of network coding cannot be exploited sufficiently. This paper proposes improvements upon HWMP with a new, network Coding-Aware routing protocol(CAHWMP) for WMN. In the CAHWMP protocol, we propose a coding criterion based on data streams to devise an algorithm for actively detecting coding opportunities during path discovery. CAHWMP subsequently establishes paths using the codingaware routing metric, which can balance channel resource consumption and the gain due to sharing resources introduced by network coding. Simulation results show that CAHWMP can establish paths with more coding opportunities; as a result, it improves network performance such as network throughput.