In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance ...In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.展开更多
Ternary europium complex with dibenzoylmethane(DBM)and 1,10phenanthroline(phen)was insitu synthesized in thin SiO2/polyvinyl butyral(PVB)hybrid films by a twostep solgel process and characterized by means of fluoresce...Ternary europium complex with dibenzoylmethane(DBM)and 1,10phenanthroline(phen)was insitu synthesized in thin SiO2/polyvinyl butyral(PVB)hybrid films by a twostep solgel process and characterized by means of fluorescence spectroscopy.The luminescence spectra,fluorescence lifetimes and photostability were all investigated.The results showed that the hybrid films exhibited the characteristic emission bands of the central rare earth Eu3+.In addition,Eu3+presented longer fluorescence lifetime than in an ethanol solution and the complex had a higher photostability in the hybrid film than in the PVB film containing the corresponding pure complex.展开更多
In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both c...In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both conductive materials and the underlying substrates,which are the two crucial components of a pressure sensor.1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors,but such sensors usually exhibit low performances mainly due to the lack of strong interfacial interactions between the substrates and 1D materials.In this paper,we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a microstructured polydimethylsiloxane substrate using Epipremnum aureum leaf as the template to fabricate highly sensitive pressure sensors.The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate.We attribute the increased sensitivity(3.5 k Pa^-1),fast response time(<50 ms),and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films.Test results demonstrate that these sensors are promising for electronic skins and motion detection applications.展开更多
The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne po...The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped Ti O2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped Ti O2 were signifi cantly enhanced compared with pure Ti O2 powders. After the hybrid fi lm fabrication, the photocatalytic activities were almost the same as the pure catalysts with kMB of 0.046. In the antibacterial testing, the hybrid fi lms can inhibit E. coli growth. A signifi cant decrease in membrane fl uidity and increase of permeability of E. coli were observed.展开更多
Barium titanate (BaTiO3) powders with particle sizes of 30 similar to 50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nano...Barium titanate (BaTiO3) powders with particle sizes of 30 similar to 50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nanoparticles into poly(amic acid) solution followed by curing led to the formation of polyimide hybrid films. The hybrid films were transparent and well distributed with BaTiO3 nanoparticles when the BaTiO3 content was less than 1 wt%. Highly loaded hybrid film containing 30 wit % BaTiO3 was tough, had a smooth surface and possessed much higher dielectric and piezoelectric constants than the parent polyimide.展开更多
Transparent photovoltaic devices(TPVDs)have attracted increasing attention in emerging electronic devices.As the application scenarios extend,there raise higher requirements regarding the stability and operating tempe...Transparent photovoltaic devices(TPVDs)have attracted increasing attention in emerging electronic devices.As the application scenarios extend,there raise higher requirements regarding the stability and operating temperature range of TPVDs.In this work,a unique preparation strategy is proposed for air stable TPVD with a wide operating temperature range,i.e.,a nanoscale architecture termed as H-TPVD is constructed that integrates a free-standing and highly transparent conductive hybrid film of graphene and single-walled carbon nanotubes(G-SWNT TCF for short)with a metal oxide NiO/TiO_(2)heterojunction.The preparation approach is suitable for scaling up.Thanks to the excellent transparent conductivity of the freestanding G-SWNT hybrid film and the ultrathin NiO/TiO_(2)heterojunction(100 nm),H-TPVD selectively absorbs the ultraviolet(UV)band of sunlight and has a transparency of up to 71%in the visible light.The integrated nanoscale architecture manifests the significant holecollecting capability of the G-SWNT hybrid film and the efficient carrier generation and separation within the ultrathin NiO/TiO_(2)heterojunction,resulting in excellent performance of the H-TPVD with a specific detectivity of 2.7×10^(10) Jones.Especially,the freestanding G-SWNT TCF is a super stable and non-porous two-dimensional film that can insulate gas molecules,thereby protecting the surface properties of NiO/TiO_(2)heterojunctions and enhancing the stability of H-TPVD.Having subjected to 20,000 cycles and storage in air for three months,the performance parameters such as photo-response signal,output power,and specific detectivity show no noticeable degradation.In particular,the as-fabricated self-powered H-TPVD can operate over a wide temperature range from −180 to 300℃,and can carry out solar-blind UV optical communication in this range.In addition,the 4×4 array H-TPVD demonstrates clear optical imaging.These results make it possible for H-TPVD to expand its potential application scenarios.展开更多
The visible-light photochromic hybrid film was constructed by entrapping phosphomolybdic acid(PMoA) into polyvinylpyrrolidone(PVPd) networks. The microstructure, photochromic properties and mechanism were inves- t...The visible-light photochromic hybrid film was constructed by entrapping phosphomolybdic acid(PMoA) into polyvinylpyrrolidone(PVPd) networks. The microstructure, photochromic properties and mechanism were inves- tigated with transmission electron microscopy(TEM), atomic force microscopy(AFM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible(UV-Vis) spectra and X-ray photoelectron spectroscopy(XPS). The results in- dicate that the Keggin geometry of PMoA and the basic structure of PVPd are not destroyed during the composite process. Irradiated with visible light, the transparent PMoA/PVPd film changes color from colorless to blue and ex- hibits reversible photochromism in the presence of oxygen. According to the XPS analysis, the charge-transfer bridge of N-H-O has been built between PMoA and PVPd matrix via non-covalent bonding, and the appearance of Mo5+ species indicates that the photo-reduction process is in accordance with the proton transfer mechanism.展开更多
In this study,graphene-carbon nanotube(CNT) hybrid films were directly synthesized on polycrystalline copper(Cu) substrates by thermal chemical vapor deposition(CVD) method.Graphene films were synthesized on Cu ...In this study,graphene-carbon nanotube(CNT) hybrid films were directly synthesized on polycrystalline copper(Cu) substrates by thermal chemical vapor deposition(CVD) method.Graphene films were synthesized on Cu substrate at 1000 ℃ in mixture of gases:argon(Ar),hydrogen(H2),and methane(CH4).Then,carbon nanotubes(CNTs) were grown uniformly on the surface of graphene/Cu films at 750 ℃ in mixture of Ar,H2.and acetylene(C2H2) gases.Ferric salt FeCl3solution deposited onto the surface of graphene/Cu substrate by spin coating method was used as precursor for the growth of the CNTs.The density and quality of the CNTs on the surface of graphene/Cu films can be controlled by varying the concentration of FeCl3salt catalyst.展开更多
PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films were deposited on PET substrates by the spin coating technique at room temperature. The optical transmittance, sheet resistance, crystallization and surface morphology were cha...PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films were deposited on PET substrates by the spin coating technique at room temperature. The optical transmittance, sheet resistance, crystallization and surface morphology were characterized by using the double beam spectrophotometer, Hall effect system, X-ray diffractometer and field emission scanning electron microscopy. XRD patterns of the hybrid films display characteristic diffraction peaks of Ag (111) and Ag (200), and the Ag NW networks have a polycrystalline structure with a Ag (111) preferred orientation. A high transmittance of 83.95% at the 550 nm wavelength and a low sheet resistance of 21.98 Ω/□ are achieved for 3-PEDOT:PS S/5-Ag NW/3-PEDOT: PS S hybrid films.展开更多
The conductive nano-sized zinc particles were embedded in an insulating amorphous silica matrix,and the hybrid films were obtained by a sol-gel method.The stable hybrid sol solution was prepared by hydrolysis and cond...The conductive nano-sized zinc particles were embedded in an insulating amorphous silica matrix,and the hybrid films were obtained by a sol-gel method.The stable hybrid sol solution was prepared by hydrolysis and condensation of Methyltrimethoxysilane (MTMS) with a one-step acidic catalyst process.Hybrid films were dip-coated on silicon wafer and cured at 120℃ for 60minutes.The structural characterization of hybrid films were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray diffraction (XRD).The electrical properties of the films were examined with four-point probe.Hybrid films showed to be relatively dense,uniform and defect free.The conductivity of hybrid films was varied with the different contents of zinc nanoparticles and the thickness of the film.It was observed that there was the percolation threshold for the film's electrical properties.展开更多
An indium tin oxide(ITO)electrode coated with monolayer TiO2/[Ru(phen)2(dC18bpy)] 2+ (phen=1,10-phenanthroline, dC18bpy=4,4′-dioctadecyl-2,2′-bipyridyl)hybrid film(denoted as ITO/TiO2-Ru)has been prepared using the ...An indium tin oxide(ITO)electrode coated with monolayer TiO2/[Ru(phen)2(dC18bpy)] 2+ (phen=1,10-phenanthroline, dC18bpy=4,4′-dioctadecyl-2,2′-bipyridyl)hybrid film(denoted as ITO/TiO2-Ru)has been prepared using the modified Langmuir-Blodgett(LB)method,and the electrocatalytic oxidation of mononucleotide of guanosine 5′-monophosphate(GMP)on an ITO/TiO2-Ru electrode after Pd-photodeposition(denoted as ITO/TiO2-Ru/Pd)has been studied.Atomic force microscopy reveals that the single-layered hybrid film of TiO2 nanosheets/[Ru(phen)2(dC18bpy)] 2+is closely packed at a surface pressure of 25 mN m 1and has a thickness of(3.20±0.5)nm.X-ray photoelectron spectra show the formation of Pd nanoparticles on the surface of hybrid film with radii of 20–200 nm by the reduction of[Pd(NH3)4] 2+ under light irradiation.When it is applied to oxidize GMP,a larger catalytic oxidative current is achieved on the ITO/TiO2-Ru/Pd electrode at the external potential above 700 mV(vs.Ag|AgCl|KCl)in comparison with the naked ITO electrode and ITO/TiO2-Ru electrode.Such a result indicates that the Pd nanoparticles are able to hamper the combination of electron hole pairs and reduce the counterwork of insulating long alkyl chains of amphiphilic Ru(II)complexes,and thus develops the electron transfer efficiency and produces the enhanced redox current.展开更多
An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett...An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+ (denoted as Clay-Ru) was closely packed at a surface pressure of 25 mN-m-1 and had a thickness of 3.4±0.5 nm. Cyclic voltammograms showed that the redox current of Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5′-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. Ag|AgCl|KCl ) and, more significantly, this response was further enhanced by light irradiation (λ>360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.展开更多
The hybrid materials are widely used in various fields for excellent performance. However, there are few researches studying their failure process. In order to prepare the hybrid materials with better performance, the...The hybrid materials are widely used in various fields for excellent performance. However, there are few researches studying their failure process. In order to prepare the hybrid materials with better performance, the failure process needs to be well studied. Two kinds of silica/polyacrylate films are successfully prepared to study the effect of organic-inorganic interaction on performance. The average diameter of silica particles is measured to be around 342 nm by scanning electron microscope(SEM). Wear test demonstrates the hybrid film, which is obtained by grafting polyacrylate onto silica particles, possesses more excellent properties than the one filled directly with silica particles. The stronger interaction between organic and inorganic components leads to a better distribution of inorganic particles within the polymer matrix. In this work, a model is presented to illustrate the deterioration process of the hybrid films, which allows us to further understand the hybrid materials.展开更多
Hybrid self-assembled multilayer films were prepared by alternate adsorption of 1,10-diaminodecane (1,10-DAD) and Keggin polyoxometalates of SiW12O404-, SiW11VO405-, and PMo12O403-, respectively. The films were repro...Hybrid self-assembled multilayer films were prepared by alternate adsorption of 1,10-diaminodecane (1,10-DAD) and Keggin polyoxometalates of SiW12O404-, SiW11VO405-, and PMo12O403-, respectively. The films were reproducibly grown at each adsorption cycle as monitored by UV spectroscopy.展开更多
New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Th3+ ion and a sol-gel precursor has been synthesized and characterized by H-1 NMR, and MS. Hybrid luminescent thin fil...New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Th3+ ion and a sol-gel precursor has been synthesized and characterized by H-1 NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.展开更多
Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model, in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals. We confirm in t...Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model, in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals. We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structure transition from the biaxial to the bent-director structure, which is similar to the result obtained using the Lebwoh-Lasher model. However, the step-like director's profile, characteristic for the biaxial structure, is spatially asymmetric in the film because the pair potential leads to K1 ≠ K3. We estimate the upper cell thickness to be 69 spin layers, in which the biaxial structure can be found.展开更多
Hybrids consisting of a microporous film and polymeric microspheres were fabricated via a simple method without a special apparatus. Highly ordered microporous polymer films with honeycomb structure were fabricated by...Hybrids consisting of a microporous film and polymeric microspheres were fabricated via a simple method without a special apparatus. Highly ordered microporous polymer films with honeycomb structure were fabricated by a dissipative process utilizing amphiphilic poly(acrylic acid)- block-polystyrene, which was synthesized by atom transfer radical polymerization followed by an acid-catalyzed ester cleavage reaction. In order to embed the microsphere efficiently, the dried microporous films should be soaked in methanol to alter the surface functionality and to improve the wettability of the film surface. The introduction of amino functionality to polystyrene microspheres by seeded polymerization of N,N-dimethylaminoethyl methacrylate drastically improved the embedding efficiency. The effect of open pore size was also investigated.展开更多
Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the indi...Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.展开更多
Preparation and photo-patterning characteristics of organic-inorganic hybrid thin film containing latent pigment by using photo-acid-generator (PAG) and microwave irradiation have been investigated. The acrylic thin f...Preparation and photo-patterning characteristics of organic-inorganic hybrid thin film containing latent pigment by using photo-acid-generator (PAG) and microwave irradiation have been investigated. The acrylic thin film modified with methoxysilane containing PAG was formed on a glass substrate and irradiated with ultraviolet rays to promote sol-gel reaction by catalytic action of acid which was generated from PAG. And then the film was hardened with microwave irradiation, yielding organic-inorganic hybrid polymer film having hardness, highly transparency and strong adhesion with a glass substrate. Since this reaction only occurred in the optically (UV) irradiated regions, by exploiting the difference between the adhesivenesses of these regions photo-irradiated through photomask with a glass substrate, it was possible to form a patterned film with pitch of 100 to 50 μm by a simple lift-off method. A pigment-containing film using latent pigments (with subtractive three primary colors of coloring materials) and a patterned film were prepared, and it was possible to make these films multi-colored by varying the mixing ratio of the pigments. This multi-colored film-preparation method is effective for simply and efficiently forming a color-filter film by applying optical and microwave irradiation.展开更多
In this article, the authors report on the use of Radio Frequency (RF) Magnetron Sputtering combined with Plasma-Based Ion Implantation (PBII) technique to synthesize the Boron-Carbon (B-C) films. High purity of boron...In this article, the authors report on the use of Radio Frequency (RF) Magnetron Sputtering combined with Plasma-Based Ion Implantation (PBII) technique to synthesize the Boron-Carbon (B-C) films. High purity of boron carbide (99.5%) disk was used as a target with an RF power of 300 W. The mixtures of Argon (Ar)-Methane (CH4) ware used as reactive gas under varying CH4 partial flow pressure at the specified range of 0 - 0.15 Pa and fixed total gas pressure and total gas flow at 0.30 Pa and 30 sccm, respectively. The effect of CH4 flow ratio on the friction coefficient of B-C films was studied. The friction coefficient of the film depended on the concentration of B. When it was 10% or lower, the coefficient decreased to 0.2 or lower. In this concentration range of B, the specific wear rate also decreased to the order of 10-7 mm3/Nm, and excellent wear resistance was displayed.展开更多
基金the financial funding of the Guangdong Province Applied Science and Technology R&D Special Fund Project:Key Technologies for Industrialization of Sulfur-Resistant and High Refractive-Index LED Packaging Silicone Materials(2016B090930010).
文摘In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.
文摘Ternary europium complex with dibenzoylmethane(DBM)and 1,10phenanthroline(phen)was insitu synthesized in thin SiO2/polyvinyl butyral(PVB)hybrid films by a twostep solgel process and characterized by means of fluorescence spectroscopy.The luminescence spectra,fluorescence lifetimes and photostability were all investigated.The results showed that the hybrid films exhibited the characteristic emission bands of the central rare earth Eu3+.In addition,Eu3+presented longer fluorescence lifetime than in an ethanol solution and the complex had a higher photostability in the hybrid film than in the PVB film containing the corresponding pure complex.
基金supported by the National Natural Science Foundation of China(No.21503064)Anhui Provincial Natural Science Foundation(No.1508085QE103)the 100 Talents Program of the Chinese Academy of Sciences。
文摘In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both conductive materials and the underlying substrates,which are the two crucial components of a pressure sensor.1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors,but such sensors usually exhibit low performances mainly due to the lack of strong interfacial interactions between the substrates and 1D materials.In this paper,we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a microstructured polydimethylsiloxane substrate using Epipremnum aureum leaf as the template to fabricate highly sensitive pressure sensors.The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate.We attribute the increased sensitivity(3.5 k Pa^-1),fast response time(<50 ms),and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films.Test results demonstrate that these sensors are promising for electronic skins and motion detection applications.
基金Funded by the National Natural Science Foundation of China(No.51208141)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.QA201206)
文摘The waterborne polyurethane/doped Ti O2 nanoparticle hybrid films were prepared. Nd, I doped Ti O2 was prepared with a 50 nm particle size firstly. The hybrid film was prepared by mixing doped Ti O2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped Ti O2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped Ti O2 were signifi cantly enhanced compared with pure Ti O2 powders. After the hybrid fi lm fabrication, the photocatalytic activities were almost the same as the pure catalysts with kMB of 0.046. In the antibacterial testing, the hybrid fi lms can inhibit E. coli growth. A signifi cant decrease in membrane fl uidity and increase of permeability of E. coli were observed.
文摘Barium titanate (BaTiO3) powders with particle sizes of 30 similar to 50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nanoparticles into poly(amic acid) solution followed by curing led to the formation of polyimide hybrid films. The hybrid films were transparent and well distributed with BaTiO3 nanoparticles when the BaTiO3 content was less than 1 wt%. Highly loaded hybrid film containing 30 wit % BaTiO3 was tough, had a smooth surface and possessed much higher dielectric and piezoelectric constants than the parent polyimide.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0208402 and 2020YFA0714700)the National Natural Science Foundation of China(Nos.52172060,51820105002,11634014,and 51372269)X.J.W.thanks Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020005).
文摘Transparent photovoltaic devices(TPVDs)have attracted increasing attention in emerging electronic devices.As the application scenarios extend,there raise higher requirements regarding the stability and operating temperature range of TPVDs.In this work,a unique preparation strategy is proposed for air stable TPVD with a wide operating temperature range,i.e.,a nanoscale architecture termed as H-TPVD is constructed that integrates a free-standing and highly transparent conductive hybrid film of graphene and single-walled carbon nanotubes(G-SWNT TCF for short)with a metal oxide NiO/TiO_(2)heterojunction.The preparation approach is suitable for scaling up.Thanks to the excellent transparent conductivity of the freestanding G-SWNT hybrid film and the ultrathin NiO/TiO_(2)heterojunction(100 nm),H-TPVD selectively absorbs the ultraviolet(UV)band of sunlight and has a transparency of up to 71%in the visible light.The integrated nanoscale architecture manifests the significant holecollecting capability of the G-SWNT hybrid film and the efficient carrier generation and separation within the ultrathin NiO/TiO_(2)heterojunction,resulting in excellent performance of the H-TPVD with a specific detectivity of 2.7×10^(10) Jones.Especially,the freestanding G-SWNT TCF is a super stable and non-porous two-dimensional film that can insulate gas molecules,thereby protecting the surface properties of NiO/TiO_(2)heterojunctions and enhancing the stability of H-TPVD.Having subjected to 20,000 cycles and storage in air for three months,the performance parameters such as photo-response signal,output power,and specific detectivity show no noticeable degradation.In particular,the as-fabricated self-powered H-TPVD can operate over a wide temperature range from −180 to 300℃,and can carry out solar-blind UV optical communication in this range.In addition,the 4×4 array H-TPVD demonstrates clear optical imaging.These results make it possible for H-TPVD to expand its potential application scenarios.
基金Supported by the National Natural Science Foundation of China(No.61340048), the Specialized Research Fund for the Doc- toral Program of Higher Education of China(No.20110041120001) and the Industrial Technology Research and Development Project of Jilin Province, China(No.2013C044).
文摘The visible-light photochromic hybrid film was constructed by entrapping phosphomolybdic acid(PMoA) into polyvinylpyrrolidone(PVPd) networks. The microstructure, photochromic properties and mechanism were inves- tigated with transmission electron microscopy(TEM), atomic force microscopy(AFM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible(UV-Vis) spectra and X-ray photoelectron spectroscopy(XPS). The results in- dicate that the Keggin geometry of PMoA and the basic structure of PVPd are not destroyed during the composite process. Irradiated with visible light, the transparent PMoA/PVPd film changes color from colorless to blue and ex- hibits reversible photochromism in the presence of oxygen. According to the XPS analysis, the charge-transfer bridge of N-H-O has been built between PMoA and PVPd matrix via non-covalent bonding, and the appearance of Mo5+ species indicates that the photo-reduction process is in accordance with the proton transfer mechanism.
基金supported mainly by the National Foundation for Science and Technology Development(No.103.992012.15)A part of work was supported by VAST 03.06/14-15.Besides
文摘In this study,graphene-carbon nanotube(CNT) hybrid films were directly synthesized on polycrystalline copper(Cu) substrates by thermal chemical vapor deposition(CVD) method.Graphene films were synthesized on Cu substrate at 1000 ℃ in mixture of gases:argon(Ar),hydrogen(H2),and methane(CH4).Then,carbon nanotubes(CNTs) were grown uniformly on the surface of graphene/Cu films at 750 ℃ in mixture of Ar,H2.and acetylene(C2H2) gases.Ferric salt FeCl3solution deposited onto the surface of graphene/Cu substrate by spin coating method was used as precursor for the growth of the CNTs.The density and quality of the CNTs on the surface of graphene/Cu films can be controlled by varying the concentration of FeCl3salt catalyst.
基金supported by the National Natural Science Foundation of China(No.10974077)the Innovation Project of Shandong Graduate Education,China(No.SDYY13093)
文摘PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films were deposited on PET substrates by the spin coating technique at room temperature. The optical transmittance, sheet resistance, crystallization and surface morphology were characterized by using the double beam spectrophotometer, Hall effect system, X-ray diffractometer and field emission scanning electron microscopy. XRD patterns of the hybrid films display characteristic diffraction peaks of Ag (111) and Ag (200), and the Ag NW networks have a polycrystalline structure with a Ag (111) preferred orientation. A high transmittance of 83.95% at the 550 nm wavelength and a low sheet resistance of 21.98 Ω/□ are achieved for 3-PEDOT:PS S/5-Ag NW/3-PEDOT: PS S hybrid films.
文摘The conductive nano-sized zinc particles were embedded in an insulating amorphous silica matrix,and the hybrid films were obtained by a sol-gel method.The stable hybrid sol solution was prepared by hydrolysis and condensation of Methyltrimethoxysilane (MTMS) with a one-step acidic catalyst process.Hybrid films were dip-coated on silicon wafer and cured at 120℃ for 60minutes.The structural characterization of hybrid films were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray diffraction (XRD).The electrical properties of the films were examined with four-point probe.Hybrid films showed to be relatively dense,uniform and defect free.The conductivity of hybrid films was varied with the different contents of zinc nanoparticles and the thickness of the film.It was observed that there was the percolation threshold for the film's electrical properties.
基金supported by the National Natural Science Foundation of China(21073133,20843007,20471043)Zhejiang Provincial Natural Science Foundation of China(Y5100283,Y4090248,Y4080177)Wenzhou University Foundation(2007L019)
文摘An indium tin oxide(ITO)electrode coated with monolayer TiO2/[Ru(phen)2(dC18bpy)] 2+ (phen=1,10-phenanthroline, dC18bpy=4,4′-dioctadecyl-2,2′-bipyridyl)hybrid film(denoted as ITO/TiO2-Ru)has been prepared using the modified Langmuir-Blodgett(LB)method,and the electrocatalytic oxidation of mononucleotide of guanosine 5′-monophosphate(GMP)on an ITO/TiO2-Ru electrode after Pd-photodeposition(denoted as ITO/TiO2-Ru/Pd)has been studied.Atomic force microscopy reveals that the single-layered hybrid film of TiO2 nanosheets/[Ru(phen)2(dC18bpy)] 2+is closely packed at a surface pressure of 25 mN m 1and has a thickness of(3.20±0.5)nm.X-ray photoelectron spectra show the formation of Pd nanoparticles on the surface of hybrid film with radii of 20–200 nm by the reduction of[Pd(NH3)4] 2+ under light irradiation.When it is applied to oxidize GMP,a larger catalytic oxidative current is achieved on the ITO/TiO2-Ru/Pd electrode at the external potential above 700 mV(vs.Ag|AgCl|KCl)in comparison with the naked ITO electrode and ITO/TiO2-Ru electrode.Such a result indicates that the Pd nanoparticles are able to hamper the combination of electron hole pairs and reduce the counterwork of insulating long alkyl chains of amphiphilic Ru(II)complexes,and thus develops the electron transfer efficiency and produces the enhanced redox current.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20471043 and 20843007)Zhejiang Provincial Natural Science Foundation (Grant Nos. Y404118 and Y408177)+2 种基金the "151" Distinguished Person Foundation of Zhejiang Province of ChinaZhejiang Technology Project Foundation (Grant No. 2007C21134)Wenzhou Technology Project Foundation (Grant No. N2004B040)
文摘An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+ (denoted as Clay-Ru) was closely packed at a surface pressure of 25 mN-m-1 and had a thickness of 3.4±0.5 nm. Cyclic voltammograms showed that the redox current of Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5′-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. Ag|AgCl|KCl ) and, more significantly, this response was further enhanced by light irradiation (λ>360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.
基金Supported by the Southwest Petroleum University Outstanding Researcher Grant(201331010015)
文摘The hybrid materials are widely used in various fields for excellent performance. However, there are few researches studying their failure process. In order to prepare the hybrid materials with better performance, the failure process needs to be well studied. Two kinds of silica/polyacrylate films are successfully prepared to study the effect of organic-inorganic interaction on performance. The average diameter of silica particles is measured to be around 342 nm by scanning electron microscope(SEM). Wear test demonstrates the hybrid film, which is obtained by grafting polyacrylate onto silica particles, possesses more excellent properties than the one filled directly with silica particles. The stronger interaction between organic and inorganic components leads to a better distribution of inorganic particles within the polymer matrix. In this work, a model is presented to illustrate the deterioration process of the hybrid films, which allows us to further understand the hybrid materials.
基金This project was supported by the National Natural Science Foundation of China(20071004)Beijing Natural Science Foundation(2002007)Scientific Research Foundation for the Retumed Overseas Chinese Scholars,State Education Ministry,to KZW.
文摘Hybrid self-assembled multilayer films were prepared by alternate adsorption of 1,10-diaminodecane (1,10-DAD) and Keggin polyoxometalates of SiW12O404-, SiW11VO405-, and PMo12O403-, respectively. The films were reproducibly grown at each adsorption cycle as monitored by UV spectroscopy.
基金We are grateful to the '973'-National Key Project for Fundamental Research of Rare Earth Functional Materials of China The National Natural Science Foundation of China (No. 29971030, No. 20171043) for the financial support of this work.
文摘New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Th3+ ion and a sol-gel precursor has been synthesized and characterized by H-1 NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 60736042 and 60878047)the Key Subject Construction Project of Hebei Province University
文摘Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model, in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals. We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structure transition from the biaxial to the bent-director structure, which is similar to the result obtained using the Lebwoh-Lasher model. However, the step-like director's profile, characteristic for the biaxial structure, is spatially asymmetric in the film because the pair potential leads to K1 ≠ K3. We estimate the upper cell thickness to be 69 spin layers, in which the biaxial structure can be found.
文摘Hybrids consisting of a microporous film and polymeric microspheres were fabricated via a simple method without a special apparatus. Highly ordered microporous polymer films with honeycomb structure were fabricated by a dissipative process utilizing amphiphilic poly(acrylic acid)- block-polystyrene, which was synthesized by atom transfer radical polymerization followed by an acid-catalyzed ester cleavage reaction. In order to embed the microsphere efficiently, the dried microporous films should be soaked in methanol to alter the surface functionality and to improve the wettability of the film surface. The introduction of amino functionality to polystyrene microspheres by seeded polymerization of N,N-dimethylaminoethyl methacrylate drastically improved the embedding efficiency. The effect of open pore size was also investigated.
文摘Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.
文摘Preparation and photo-patterning characteristics of organic-inorganic hybrid thin film containing latent pigment by using photo-acid-generator (PAG) and microwave irradiation have been investigated. The acrylic thin film modified with methoxysilane containing PAG was formed on a glass substrate and irradiated with ultraviolet rays to promote sol-gel reaction by catalytic action of acid which was generated from PAG. And then the film was hardened with microwave irradiation, yielding organic-inorganic hybrid polymer film having hardness, highly transparency and strong adhesion with a glass substrate. Since this reaction only occurred in the optically (UV) irradiated regions, by exploiting the difference between the adhesivenesses of these regions photo-irradiated through photomask with a glass substrate, it was possible to form a patterned film with pitch of 100 to 50 μm by a simple lift-off method. A pigment-containing film using latent pigments (with subtractive three primary colors of coloring materials) and a patterned film were prepared, and it was possible to make these films multi-colored by varying the mixing ratio of the pigments. This multi-colored film-preparation method is effective for simply and efficiently forming a color-filter film by applying optical and microwave irradiation.
文摘In this article, the authors report on the use of Radio Frequency (RF) Magnetron Sputtering combined with Plasma-Based Ion Implantation (PBII) technique to synthesize the Boron-Carbon (B-C) films. High purity of boron carbide (99.5%) disk was used as a target with an RF power of 300 W. The mixtures of Argon (Ar)-Methane (CH4) ware used as reactive gas under varying CH4 partial flow pressure at the specified range of 0 - 0.15 Pa and fixed total gas pressure and total gas flow at 0.30 Pa and 30 sccm, respectively. The effect of CH4 flow ratio on the friction coefficient of B-C films was studied. The friction coefficient of the film depended on the concentration of B. When it was 10% or lower, the coefficient decreased to 0.2 or lower. In this concentration range of B, the specific wear rate also decreased to the order of 10-7 mm3/Nm, and excellent wear resistance was displayed.