The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global deman...The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were...The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.展开更多
The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO...The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO3]2·2.33H2O(1), [CuL]3[V(10)O(28)]·8H2O(2) and [Cu L]3[V6O(18)]·8H2O(3). Single-crystal X-ray diffraction analyses reveal that three diverse vanadium polyoxoanions, [V6O(18)]6- ring, [V(10)O(28)]6- cluster, and [V(12)O(35)]^10- ring, were isolated from the same reactant NH4VO3 under different conditions. The [CuL]^2+ bridges the [V10O28]6- clusters to form a two-dimensional sheet in 2, and link the [V6O(18)]^6- rings in 1 and [V(12)O(35)]^10- rings in 3 into three-dimensional frameworks, respectively.展开更多
A new organic-inorganic hybrid based on tungstophosphate anions and benzotria- zole cations, [Na(BTA)E(H2O)2]2[{Cd(BTA)4(H2O)}2(P2W18O62)]·6H2O (1) (BTA = benzotriazole) has been synthesized in aque...A new organic-inorganic hybrid based on tungstophosphate anions and benzotria- zole cations, [Na(BTA)E(H2O)2]2[{Cd(BTA)4(H2O)}2(P2W18O62)]·6H2O (1) (BTA = benzotriazole) has been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. X-ray analysis showed that both {Na(BTA)2} and {Cd(BTA)4} units are supported on the a-Dawson polyoxoanion [P2W18062]6- via the surface bridging oxygen atoms. The electrochemical properties of 1 in aqueous solution are studied at room temperature. It was found that 1 presents good electrocatalytic activities for the reduction of NO2^-.展开更多
Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium...Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.展开更多
Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O...Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O(2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior.展开更多
By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. C...By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=1 0.188(2) A, b=1 1.497(2) A, c=7.3975(15) A, V=866.5(3) A^3, Z=4, Dcalcd= 2.705 g/cm^3; 2. crystal system triclinic, space group P1^- (No. 2), a=8.3190(17) A, b=8.4764(17) A, c=1 1.183(2) A, a=95.48(3)°, β=92.03(3)°, γ=107.24(3)°,V=748.0(3) A^3, Z=2, Dcalcd= 1.958 g/cm^3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.展开更多
An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,e...An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,epoxy,hydroxyl and carboxyl,which can form networks at room temperature and result in an enhanced chemical and water resistance of the consolidated soil.With increasing of TEOS content,the hybrid materials keep colorless with only some reduction of transparency,while the hybrid materials obviously turn from moderate yellowish to brown yellow with the increase of the epoxy resin(EOR) content after 120 min UV irradiation.SEM observation indicates that the hybrid soil consolidation materials can effectively penetrate into the soil substrate,fill up most of the pores,decrease the area porosity and consolidate the Jinsha archaeological soil.The consolidation performances are in the sequence:ESA > K2SiO4(PS) > tetraethyl orthosilicate(TEOS).展开更多
Three novel inorganic-organic hybrid materials, [Cu(imi)2(H2O)(MoO4)]n 1, [Cuz(imi)3(MoO4)E]n.nH2O 2 and [Cu3(imi)2(OH)2(MoO4)2]n 3 (imi = imidazole), were synthesized and characterized by X-ray sing...Three novel inorganic-organic hybrid materials, [Cu(imi)2(H2O)(MoO4)]n 1, [Cuz(imi)3(MoO4)E]n.nH2O 2 and [Cu3(imi)2(OH)2(MoO4)2]n 3 (imi = imidazole), were synthesized and characterized by X-ray single-crystal structure determination. 1 crystallizes in orthorhombic, space group Pca21 with a = 13.382(4), b = 8.527(2), c = 9.622(3)A, V = 1098.0(5) A^3 Z = 4, C6H10CuMoN4O5, Mr = 377.66, Dc = 2.285 g/cm^3, F(000) = 740,μ(MoKa) = 3.095 mm^-1, the final R = 0.0256 and wR = 0.0722 for 1896 observed reflections with I 〉 2σ(I). 2 crystallizes in monoclinic, space group P2t/c with a= 11.170(2), b = 7.8244(15), c = 22.631(4)A, β = 115.790(7)°, V = 1780.9(6)A^3 Z = 4, C9H14Cu2Mo2N6O9, Mr = 669.24, Dc= 2.496 g/cm^3, F(000)=1295,μ(MoKa) = 3.792 mm^-1, the final R = 0.0225 and wR = 0.0615 for 3838 observed reflections with I 〉 2σ(I). 3 crystallizes in monoclinic, space group P21/c with a = 5.5599(19), b = 23.771(8), c = 7.3044(18)A , β = 129.356(16)°, V = 746.5(4)A^3, Z = 2, C6H10Cu3Mo2N4O10, Mr = 680.71, Dc = 3.029 g/cm^3, F(000) = 650,μ(MoKa) = 5.900 mm^-1, the final R = 0.0215 and wR = 0.0524 for 1620 observed reflections with I 〉 2σ(I).展开更多
The sol-gel transition process of PMMA/SiO2 hybrid materials was first studied by means of the dynamic torsional vibration method. The different stages of the transition can be described by the change of torque. The t...The sol-gel transition process of PMMA/SiO2 hybrid materials was first studied by means of the dynamic torsional vibration method. The different stages of the transition can be described by the change of torque. The temperature-dependent measurement of the gel time( tg ) gives the possibility to determine the apparent activation energy.( Ea ) of this transition according to Flory's gelation theory. The non-equilibrium thermodynamic fluctuation theory was used to predict the transition behavior. The isothermal transition experiments on hybrid sols with different TEOS(tetraethyl orthosilicate) contents were carried out. The results show that the Ea of a hybrid sol is higher than that of a non- hybrid sol of a TEOS-water-ethanol system. The increasing of TEOS content in a hybrid sol has no obvious effect on the Ea value, but it can enhance the sol-gel .reaction rate.展开更多
Organic-inorganic hybrids are next-generation materials for use in high-performance optoelectronic devices owing to their adaptabilities in terms of design and properties.This article reviews the application of hybrid...Organic-inorganic hybrids are next-generation materials for use in high-performance optoelectronic devices owing to their adaptabilities in terms of design and properties.This article reviews the application of hybrid materials and layers in several widely used optoelectronic devices,i.e.,light amplification by stimulated emission of radiation(LASER),solar cells,and light-emitting diodes(LEDs).The effects of the incorporation of inorganic particles on photostability and optical gain are analyzed in the first section with reference to dye and perovskite lasers.Second,the strategies used in blending inorganic nanostructures into organic solar cells and bulk heterojunctions are analyzed.The use of various organic layers as electron-and hole-transport materials in Si heterojunction solar cells is reviewed in detail.Finally,the benefits of the presence of organic components in quantum-dot-and perovskite-based LEDs are derived from the analysis.The integration of organic and inorganic components with optimal interfaces and morphologies is a challenge in developing hybrid materials with improved efficiencies.展开更多
YVO_(4):Eu^(3+) phosphors have been widely used in optoelectronic integration fields of its chemical and thermal stability.However,the excitation spectrum band of VO_(4)^(3-) is too narrow for high-efficiency luminesc...YVO_(4):Eu^(3+) phosphors have been widely used in optoelectronic integration fields of its chemical and thermal stability.However,the excitation spectrum band of VO_(4)^(3-) is too narrow for high-efficiency luminescence,restricting its further development.Herein,flower-like and linear-like YVO_(4):Eu^(3+) hollow mesoporous spheres were synthesized and connected with Eu organic ligand,to obtain a new hybrid luminescent material.The characterization shows that the pores of microspheres are in size of about 2-50 nm,sticked with regular morphology,well crystallized,and in uniform distribution.The emission intensity of hybrid luminescent material is higher than that of single YVO_(4):Eu^(3+) and single Eu co mplexes realizing the purpose of mutually reinforcing luminesce nce.This paper provides a new idea to connect rare earth complexes for a new non-silicon-based mesoporous spherical matrix.展开更多
With unprecedented properties and functions,polymer-based hybrid materials hold extremely important position in many fields.Here in this review,we summarized applications of polymer-based hybrid materials toward perso...With unprecedented properties and functions,polymer-based hybrid materials hold extremely important position in many fields.Here in this review,we summarized applications of polymer-based hybrid materials toward personal health.Firstly,theoretical calculation and in-situ visualization used to explore the interfacial interaction and formation of hybrid materials are introduced.Secondly,applications of polymer-based hybrid materials in personal health from proactive protection(anti-bacteria and harmful gas removal),health condition monitoring(breathing and sleep)to disease diagnosis(magnetic resonance imaging),and tissue therapy(dental restoration)are discussed.Additionally,aggregation-induced emission(AIE)organic molecules based optical sensors for personal security and polymer semiconductor for organic thin film transistors are simply discussed.Finally,we present the future tendency for preparing polymer-based hybrid materials that related with personal health.展开更多
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater...Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.展开更多
Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,i...Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.展开更多
Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulo...Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulose framework through coordination with the carboxylic groups of the cellulose. Hybrid materials were fabricated as hydrogel and aerogel. As shown by SEM and pore parameters, aerogel materials which were obtained by supercritical CO2 drying show hierarchical porous structure. The photoluminescence spectrum of the hybrid materials shows the characteristic red emission of Eu3+ ion and green emission of Tb3+. Further luminescent investigations reveal that these hybrid materials can detect Fe3+ with relative selectivity and high sensitivity, which suggests that the hybrid materials could be a promising luminescent probe for selectively sensing Fe3+ ion.展开更多
Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 ...Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1).展开更多
A new organic-inorganic hybrid compound (dienHs)2(P2Mo5O23) (1) [dien=NH(CH2CH2NH2)2] has been hydrothermally synthesized and characterized by elemental analyses, IR spectrum, thermogravimetric analysis, and t...A new organic-inorganic hybrid compound (dienHs)2(P2Mo5O23) (1) [dien=NH(CH2CH2NH2)2] has been hydrothermally synthesized and characterized by elemental analyses, IR spectrum, thermogravimetric analysis, and the single crystal X-ray diffraction technique. Compound 1 crystallizes in the triclinic system with space group P1 and a=0.9790(2) nm, b=0.9922(2) nm, c= 1.4644(3) nm, α=95.510(10)°, β=98.860(10)°, γ=95.700(10)°, V=1.3895(5) nm^3, Z=2, R=0.0465. The results show that the compound consists of dienH3^3++ and P2Mo5O23^6-, and the heteropoly anion P2Mo5O23^6- is connected to a 1-D chain structure with the protonated dien by hydrogen bonds.展开更多
基金the result of a research project conducted with the funds of the Open R&D program of Korea Electric Power Corporation (R23XO04)supported by the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (K_G012002238601)+2 种基金by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002)by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021M3I3A1082880)by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224000000320)。
文摘The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
基金Project(2010-0008-277) supported by Program of Establishment of an Infrastructure for Public Usepartly by NCRC (National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education
文摘The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.
基金Supported by the Opening Project of Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South(XNZW14C08)the NSF of Hunan Province(2015JJ2072)+2 种基金the Construct Program of the Key Discipline in Hunan Provincethe Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Project for Undergraduate Research Study and Innovative Experiment of Hunan Provincial(2016-283)
文摘The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO3]2·2.33H2O(1), [CuL]3[V(10)O(28)]·8H2O(2) and [Cu L]3[V6O(18)]·8H2O(3). Single-crystal X-ray diffraction analyses reveal that three diverse vanadium polyoxoanions, [V6O(18)]6- ring, [V(10)O(28)]6- cluster, and [V(12)O(35)]^10- ring, were isolated from the same reactant NH4VO3 under different conditions. The [CuL]^2+ bridges the [V10O28]6- clusters to form a two-dimensional sheet in 2, and link the [V6O(18)]^6- rings in 1 and [V(12)O(35)]^10- rings in 3 into three-dimensional frameworks, respectively.
基金the Department of Education of Jilin Province(No.2014349 and 2015431)Science and Technology Bureau of Jilin City(No.20156418)Jilin Institute of Chemical Technology(No.201343 and 2015031)
文摘A new organic-inorganic hybrid based on tungstophosphate anions and benzotria- zole cations, [Na(BTA)E(H2O)2]2[{Cd(BTA)4(H2O)}2(P2W18O62)]·6H2O (1) (BTA = benzotriazole) has been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. X-ray analysis showed that both {Na(BTA)2} and {Cd(BTA)4} units are supported on the a-Dawson polyoxoanion [P2W18062]6- via the surface bridging oxygen atoms. The electrochemical properties of 1 in aqueous solution are studied at room temperature. It was found that 1 presents good electrocatalytic activities for the reduction of NO2^-.
基金the financial support from the Ministry of Science and Technology of China (grants 2012CB215500 and 2013CB933100)the National Natural Science Foundation of China (grants 21573222 and 21103178)
文摘Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.
基金Funded by the Natural Science Foundation of Hubei Province(No.2003ABA085)
文摘Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O(2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior.
文摘By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=1 0.188(2) A, b=1 1.497(2) A, c=7.3975(15) A, V=866.5(3) A^3, Z=4, Dcalcd= 2.705 g/cm^3; 2. crystal system triclinic, space group P1^- (No. 2), a=8.3190(17) A, b=8.4764(17) A, c=1 1.183(2) A, a=95.48(3)°, β=92.03(3)°, γ=107.24(3)°,V=748.0(3) A^3, Z=2, Dcalcd= 1.958 g/cm^3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.
基金Project(2004BA810B02)supported by the 10th Five Years Key Programs for Science and Technology Development of China
文摘An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,epoxy,hydroxyl and carboxyl,which can form networks at room temperature and result in an enhanced chemical and water resistance of the consolidated soil.With increasing of TEOS content,the hybrid materials keep colorless with only some reduction of transparency,while the hybrid materials obviously turn from moderate yellowish to brown yellow with the increase of the epoxy resin(EOR) content after 120 min UV irradiation.SEM observation indicates that the hybrid soil consolidation materials can effectively penetrate into the soil substrate,fill up most of the pores,decrease the area porosity and consolidate the Jinsha archaeological soil.The consolidation performances are in the sequence:ESA > K2SiO4(PS) > tetraethyl orthosilicate(TEOS).
基金the Natural Science Foundation of Fujian Province(2006L2005,2006F3135,2006F3141,2007HZ0001-1)
文摘Three novel inorganic-organic hybrid materials, [Cu(imi)2(H2O)(MoO4)]n 1, [Cuz(imi)3(MoO4)E]n.nH2O 2 and [Cu3(imi)2(OH)2(MoO4)2]n 3 (imi = imidazole), were synthesized and characterized by X-ray single-crystal structure determination. 1 crystallizes in orthorhombic, space group Pca21 with a = 13.382(4), b = 8.527(2), c = 9.622(3)A, V = 1098.0(5) A^3 Z = 4, C6H10CuMoN4O5, Mr = 377.66, Dc = 2.285 g/cm^3, F(000) = 740,μ(MoKa) = 3.095 mm^-1, the final R = 0.0256 and wR = 0.0722 for 1896 observed reflections with I 〉 2σ(I). 2 crystallizes in monoclinic, space group P2t/c with a= 11.170(2), b = 7.8244(15), c = 22.631(4)A, β = 115.790(7)°, V = 1780.9(6)A^3 Z = 4, C9H14Cu2Mo2N6O9, Mr = 669.24, Dc= 2.496 g/cm^3, F(000)=1295,μ(MoKa) = 3.792 mm^-1, the final R = 0.0225 and wR = 0.0615 for 3838 observed reflections with I 〉 2σ(I). 3 crystallizes in monoclinic, space group P21/c with a = 5.5599(19), b = 23.771(8), c = 7.3044(18)A , β = 129.356(16)°, V = 746.5(4)A^3, Z = 2, C6H10Cu3Mo2N4O10, Mr = 680.71, Dc = 3.029 g/cm^3, F(000) = 650,μ(MoKa) = 5.900 mm^-1, the final R = 0.0215 and wR = 0.0524 for 1620 observed reflections with I 〉 2σ(I).
基金Supported by the National Natural Science Foundation of China(Nos.50025309 and 90201016).
文摘The sol-gel transition process of PMMA/SiO2 hybrid materials was first studied by means of the dynamic torsional vibration method. The different stages of the transition can be described by the change of torque. The temperature-dependent measurement of the gel time( tg ) gives the possibility to determine the apparent activation energy.( Ea ) of this transition according to Flory's gelation theory. The non-equilibrium thermodynamic fluctuation theory was used to predict the transition behavior. The isothermal transition experiments on hybrid sols with different TEOS(tetraethyl orthosilicate) contents were carried out. The results show that the Ea of a hybrid sol is higher than that of a non- hybrid sol of a TEOS-water-ethanol system. The increasing of TEOS content in a hybrid sol has no obvious effect on the Ea value, but it can enhance the sol-gel .reaction rate.
基金M.Arya thanks the Kerala State Council for Science,Technology,and Environment,Government of Kerala,India,for providing a research fellowship(Ref.317)S.Heera thanks the Department of Science and Technology,Government of India(IF200250)for providing a research fellowship via the Innovation in Science Pursuit for Inspired Research scheme.Funding from the University Grants Commission(UGC),Government of India,via a UGC-BSR start-up grant(F.30–596/2021(BSR))is also gratefully acknowledged.
文摘Organic-inorganic hybrids are next-generation materials for use in high-performance optoelectronic devices owing to their adaptabilities in terms of design and properties.This article reviews the application of hybrid materials and layers in several widely used optoelectronic devices,i.e.,light amplification by stimulated emission of radiation(LASER),solar cells,and light-emitting diodes(LEDs).The effects of the incorporation of inorganic particles on photostability and optical gain are analyzed in the first section with reference to dye and perovskite lasers.Second,the strategies used in blending inorganic nanostructures into organic solar cells and bulk heterojunctions are analyzed.The use of various organic layers as electron-and hole-transport materials in Si heterojunction solar cells is reviewed in detail.Finally,the benefits of the presence of organic components in quantum-dot-and perovskite-based LEDs are derived from the analysis.The integration of organic and inorganic components with optimal interfaces and morphologies is a challenge in developing hybrid materials with improved efficiencies.
基金Project supported by the Shaanxi Provincial Department of Science and Technology Key Industry Innovation Chain Project (2019TSLGY07-04)the Shaanxi Provincial Science and Technology Plan Project Cooperation Unit Project (2019TD-019-01)+2 种基金Xi’an Key Laboratory of Clean Energy(2019219914SYS014CG036)the Natural Science Foundation of Xi’an (XA2020-CXRCFW-0247)the Yulin Industry-University-Research Cooperation Project(2019-173)。
文摘YVO_(4):Eu^(3+) phosphors have been widely used in optoelectronic integration fields of its chemical and thermal stability.However,the excitation spectrum band of VO_(4)^(3-) is too narrow for high-efficiency luminescence,restricting its further development.Herein,flower-like and linear-like YVO_(4):Eu^(3+) hollow mesoporous spheres were synthesized and connected with Eu organic ligand,to obtain a new hybrid luminescent material.The characterization shows that the pores of microspheres are in size of about 2-50 nm,sticked with regular morphology,well crystallized,and in uniform distribution.The emission intensity of hybrid luminescent material is higher than that of single YVO_(4):Eu^(3+) and single Eu co mplexes realizing the purpose of mutually reinforcing luminesce nce.This paper provides a new idea to connect rare earth complexes for a new non-silicon-based mesoporous spherical matrix.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1201301,2021YFA1201300,and 2021YFA1201304)the National Natural Science Foundation of China(Nos.51903042,52103298,51973030,and 22173017)+1 种基金the Science and Technology Commission of Shanghai Municipality(Nos.20JC1414900,21ZR1401400,and 19ZR1470600)the Fundamental Research Funds for the Central Universities(No.2232021A-06).
文摘With unprecedented properties and functions,polymer-based hybrid materials hold extremely important position in many fields.Here in this review,we summarized applications of polymer-based hybrid materials toward personal health.Firstly,theoretical calculation and in-situ visualization used to explore the interfacial interaction and formation of hybrid materials are introduced.Secondly,applications of polymer-based hybrid materials in personal health from proactive protection(anti-bacteria and harmful gas removal),health condition monitoring(breathing and sleep)to disease diagnosis(magnetic resonance imaging),and tissue therapy(dental restoration)are discussed.Additionally,aggregation-induced emission(AIE)organic molecules based optical sensors for personal security and polymer semiconductor for organic thin film transistors are simply discussed.Finally,we present the future tendency for preparing polymer-based hybrid materials that related with personal health.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
基金the National Key Research and Development Program of China(2017YFB1104300).
文摘Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring.
基金Project supported by the National Natural Science Foundation of China(21161023,21661034)
文摘Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulose framework through coordination with the carboxylic groups of the cellulose. Hybrid materials were fabricated as hydrogel and aerogel. As shown by SEM and pore parameters, aerogel materials which were obtained by supercritical CO2 drying show hierarchical porous structure. The photoluminescence spectrum of the hybrid materials shows the characteristic red emission of Eu3+ ion and green emission of Tb3+. Further luminescent investigations reveal that these hybrid materials can detect Fe3+ with relative selectivity and high sensitivity, which suggests that the hybrid materials could be a promising luminescent probe for selectively sensing Fe3+ ion.
基金supported by the National Natural Science Foundation of China (51203071, 51363014 and 51463012)China Postdoctoral Science Foundation (2014M552509, 2015T81064)+2 种基金Natural Science Funds of the Gansu Province (2015GS05123)Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology (J201402)University Scientific Research Project of Gansu Province (2014B-025)
文摘Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1).
基金Project supported by the National Natural Science Foundation of Hubei Province (No. 2003ABA085).
文摘A new organic-inorganic hybrid compound (dienHs)2(P2Mo5O23) (1) [dien=NH(CH2CH2NH2)2] has been hydrothermally synthesized and characterized by elemental analyses, IR spectrum, thermogravimetric analysis, and the single crystal X-ray diffraction technique. Compound 1 crystallizes in the triclinic system with space group P1 and a=0.9790(2) nm, b=0.9922(2) nm, c= 1.4644(3) nm, α=95.510(10)°, β=98.860(10)°, γ=95.700(10)°, V=1.3895(5) nm^3, Z=2, R=0.0465. The results show that the compound consists of dienH3^3++ and P2Mo5O23^6-, and the heteropoly anion P2Mo5O23^6- is connected to a 1-D chain structure with the protonated dien by hydrogen bonds.