The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high a...The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high accuracy in modelling the reflection coefficients.However,amplitude inversion based on it is highly nonlinear,thus,requires nonlinear inversion techniques like the genetic algorithm(GA)which has been widely applied in seismology.The quantum genetic algorithm(QGA)is a variant of the GA that enjoys the advantages of quantum computing,such as qubits and superposition of states.It,however,suffers from limitations in the areas of convergence rate and escaping local minima.To address these shortcomings,in this study,we propose a hybrid quantum genetic algorithm(HQGA)that combines a self-adaptive rotating strategy,and operations of quantum mutation and catastrophe.While the selfadaptive rotating strategy improves the flexibility and efficiency of a quantum rotating gate,the operations of quantum mutation and catastrophe enhance the local and global search abilities,respectively.Using the exact Zoeppritz equation,the HQGA was applied to both synthetic and field seismic data inversion and the results were compared to those of the GA and QGA.A number of the synthetic tests show that the HQGA requires fewer searches to converge to the global solution and the inversion results have generally higher accuracy.The application to field data reveals a good agreement between the inverted parameters and real logs.展开更多
Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.Th...Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.The existing all-qubit QSVT algorithm demands lots of ancillary qubits,remaining a huge challenge for realization on nearterm intermediate-scale quantum computers.In this paper,we propose a hybrid QSVT(HQSVT) algorithm utilizing both discrete variables(DVs) and continuous variables(CVs).In our algorithm,raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations.Our algorithm requires O [log(MN)] qubits with0(1) qumodes and totally performs 0(1) operations,which significantly reduces the space and runtime consumption.展开更多
The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion)...The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed.展开更多
基金supported by the National Natural Science Foundation of China(U19B6003,42122029)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX 202003)partially supported by SEG/WesternGeco Scholarship,SEG Foundation/Chevron Scholarship,and SEG/Norman and Shirley Domenico Scholarship
文摘The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high accuracy in modelling the reflection coefficients.However,amplitude inversion based on it is highly nonlinear,thus,requires nonlinear inversion techniques like the genetic algorithm(GA)which has been widely applied in seismology.The quantum genetic algorithm(QGA)is a variant of the GA that enjoys the advantages of quantum computing,such as qubits and superposition of states.It,however,suffers from limitations in the areas of convergence rate and escaping local minima.To address these shortcomings,in this study,we propose a hybrid quantum genetic algorithm(HQGA)that combines a self-adaptive rotating strategy,and operations of quantum mutation and catastrophe.While the selfadaptive rotating strategy improves the flexibility and efficiency of a quantum rotating gate,the operations of quantum mutation and catastrophe enhance the local and global search abilities,respectively.Using the exact Zoeppritz equation,the HQGA was applied to both synthetic and field seismic data inversion and the results were compared to those of the GA and QGA.A number of the synthetic tests show that the HQGA requires fewer searches to converge to the global solution and the inversion results have generally higher accuracy.The application to field data reveals a good agreement between the inverted parameters and real logs.
基金Project supported by the Key Research and Development Program of Guangdong Province,China(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant Nos.61521001,12074179,and 11890704)。
文摘Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.The existing all-qubit QSVT algorithm demands lots of ancillary qubits,remaining a huge challenge for realization on nearterm intermediate-scale quantum computers.In this paper,we propose a hybrid QSVT(HQSVT) algorithm utilizing both discrete variables(DVs) and continuous variables(CVs).In our algorithm,raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations.Our algorithm requires O [log(MN)] qubits with0(1) qumodes and totally performs 0(1) operations,which significantly reduces the space and runtime consumption.
文摘The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed.