A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
In the contemporary era of unprecedented innovations such as Internet of Things(IoT),modern applications cannot be imagined without the presence of Wireless Sensor Network(WSN).Nodes in WSN use neighbour discovery(ND)...In the contemporary era of unprecedented innovations such as Internet of Things(IoT),modern applications cannot be imagined without the presence of Wireless Sensor Network(WSN).Nodes in WSN use neighbour discovery(ND)protocols to have necessary communication among the nodes.Neighbour discovery process is crucial as it is to be done with energy efficiency and minimize discovery latency and maximize percentage of neighbours discovered.The current ND approaches that are indirect in nature are categorized into methods of removal of active slots from wake-up schedules and intelligent addition of new slots.The two methods are found to have certain drawbacks.Thefirst category disturbs original integrity of wake-up schedules leading to reduced chances of discovering new nodes in WSN as neighbours.When second category is followed,it may have inefficient slots in the wake-up schedules leading to performance degradation.Therefore,the motivation behind the work in this paper is that by combining the two categories,it is possible to reap benefits of both and get rid of the limitations of the both.Making a hybrid is achieved by introducing virtual nodes that help maximize performance by ensuring original integrity of wake-up schedules and adding of efficient active slots.Thus a Hybrid Approach to Neighbour Discovery(HAND)protocol is realized in WSN.The simulation study revealed that HAND outperforms the existing indirect ND models.展开更多
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network co...Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network consisting of distributed devices distributed at various distances,which monitors the physical and environmental conditions using sensors.Wireless sensor networks have many uses,including the built-in sensor on the outside of the pipeline or installed to support bridge structures,robotics,healthcare,environmental monitoring,etc.Wireless Sensor networks could be used to monitor the temperature,pressure,leak detection and sabotage of transmission lines.Wireless sensor networks are vulnerable to various attacks.Cryptographic algorithms have a good role in information security for wireless sensor networks.Now,various types of cryptographic algorithms provide security in networks,but there are still some problems.In this research,to improve the power of these algorithms,a new hybrid encryption algorithm for monitoring energy transmission lines and increasing the security of wireless sensor networks is proposed.The proposed hybrid encryption algorithm provides the security and timely transmission of data in wireless sensor networks to monitor the transmission pipelines.The proposed algorithm fulfills three principles of cryptography:integrity,confidentiality and authentication.The details of the algorithm and basic concepts are presented in such a way that the algorithm can be operational.展开更多
Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to g...Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.展开更多
Wireless sensor networks (WSNs) are mostly deployed in a remote working environment, since sensor nodes are small in size, cost-efficient, low-power devices, and have limited battery power supply. Because of limited p...Wireless sensor networks (WSNs) are mostly deployed in a remote working environment, since sensor nodes are small in size, cost-efficient, low-power devices, and have limited battery power supply. Because of limited power source, energy consumption has been considered as the most critical factor when designing sensor network protocols. The network lifetime mainly depends on the battery lifetime of the node. The main concern is to increase the lifetime with respect to energy constraints. One way of doing this is by turning off redun-dant nodes to sleep mode to conserve energy while active nodes can provide essential k-coverage, which improves fault-tolerance. Hence, we use scheduling algorithms that turn off redundant nodes after providing the required coverage level k. The scheduling algorithms can be implemented in centralized or localized schemes, which have their own advantages and disadvantages. To exploit the advantages of both schemes, we employ both schemes on the network according to a threshold value. This threshold value is estimated on the performance of WSN based on network lifetime comparison using centralized and localized algorithms. To extend the network lifetime and to extract the useful energy from the network further, we go for compromise in the area covered by nodes.展开更多
The Wireless Sensor Networks(WSN)is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission.The clustering technique employed to group...The Wireless Sensor Networks(WSN)is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission.The clustering technique employed to group the collection of nodes for data transmission and each node is assigned with a cluster head.The major concern with the identification of the cluster head is the consideration of energy consumption and hence this paper proposes an hybrid model which forms an energy efficient cluster head in the Wireless Sensor Network.The proposed model is a hybridization of Glowworm Swarm Optimization(GSO)and Artificial Bee Colony(ABC)algorithm for the better identification of cluster head.The performance of the proposed model is compared with the existing techniques and an energy analysis is performed and is proved to be more efficient than the existing model with normalized energy of 5.35%better value and reduction of time complexity upto 1.46%.Above all,the proposed model is 16%ahead of alive node count when compared with the existing methodologies.展开更多
Traditional sensor network and robot navigation are based on the map of detecting fields available in advance. The optimal algorithms are explored to solve the energy saving, shortest path problems, etc. However, in p...Traditional sensor network and robot navigation are based on the map of detecting fields available in advance. The optimal algorithms are explored to solve the energy saving, shortest path problems, etc. However, in practical environment, there are many fields, whose map is difficult to get, and need to detect. This paper explores a kind of ad-hoc navigation algorithm based on the hybrid sensor network without the prior map. The system of navigation is composed of static nodes and mobile nodes. The static nodes monitor events occurring and broadcast. In the system, a kind of cluster broadcast method is adopted to determine the robot localization. The mobile nodes detect the adversary or dangerous fields and broadcast warning message. Robot gets the message and follows ad-hoc routine to arrive the events occurring place. In the whole process, energy saving has taken into account. The algorithms of nodes and robot are given in this paper. The simulate and practical results are available as well.展开更多
Traditional sensor network and robot navigation are based on the map of detecting the fields available in advance. The optimal algorithms are developed to solve the energy saving, the shortest path problems, etc. Howe...Traditional sensor network and robot navigation are based on the map of detecting the fields available in advance. The optimal algorithms are developed to solve the energy saving, the shortest path problems, etc. However, in the practical enviroranent, there are many fields, whose map is difficult to get, and needs to be detected. In this paper a kind of ad-hoc navigation algorithm is explored, which is based on the hybrid sensor network without the prior map in advance. The navigation system is composed of static nodes and dynamic trades. The static nodes monitor the occurrances of the events and broadcast them. In the syston, a kind of algorithm is to locate the rdbot, which is based on duster broadcasting. The dynamic nodes detect the adversary or dangerous fields and broadcast warning messages. The robot gets the message and follows ad-hoc routine to arrive where the events occur. In the whole process, energy saving has been taken into account. The algorithms, which are based on the hybrid sensor network, are given in this paper. The simulation and practical results are also available.展开更多
Hybrid sensor networks (HSNs) comprise of mobile and static sensor nodes setup for purpose of collaboratively performing tasks like sensing a phenomenon or monitoring a region. In this paper, we present target interce...Hybrid sensor networks (HSNs) comprise of mobile and static sensor nodes setup for purpose of collaboratively performing tasks like sensing a phenomenon or monitoring a region. In this paper, we present target interception as a novel application using mobile sensor nodes as executor. Static sensor nodes sense, compute and communicate with each other for navigation. Mobile nodes are guided to intercept target by the static nodes nearby. Our approach does not require any prior maps of the environment thus, cutting down the cost of the overall energy consumption. As to multi-targets multi-mobile nodes case, we present a PMB algorithm for task assignment. Simulation results have verified the feasibility and effectiveness of our approach proposed.展开更多
In order to make up for the deficiencies and insufficiencies that In order to make up for the deficiencies and insufficiencies that wireless sensor network is constituted absolutely by static or dynamic sensor nodes. ...In order to make up for the deficiencies and insufficiencies that In order to make up for the deficiencies and insufficiencies that wireless sensor network is constituted absolutely by static or dynamic sensor nodes. So a deployment mechanism for hybrid nodes barrier coverage (HNBC)is proposed in wireless sensor network, which collaboratively consists of static and dynamic sensor nodes. We introduced the Voronoi diagram to divide the whole deployment area. According to the principle of least square method, and the static nodes are used to construct the reference barrier line (RBL). And we implemented effectively barrier coverage by monitoring whether there is a coverage hole in the deployment area, and then to determine whether dynamic nodes need limited mobility to redeploy the monitoring area. The simulation results show that the proposed algorithm improved the coverage quality, and completed the barrier coverage with less node moving distance and lower energy consumption, and achieved the expected coverage requirements展开更多
Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of resear...Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of research has become increasingly popular due to the host of useful applications it can potentially serve.A deep analysis of the concepts associated with this domain reveals that the two main problems that are to be tackled here are throughput enhancement and network security improvement.The present article takes on one of these two issues namely the throughput enhancement.For the purpose of improving network productivity,a hybrid clustering based packet propagation protocol has been proposed.The protocol makes use of not only clustering mechanisms of machine learning but also utilizes the traditional forwarding function approach to arrive at an optimum model.The result of the simulation is a novel transmission protocol which significantly enhances network productivity and increases throughput value.展开更多
This paper provides a brief introduction to the application of the sensor monitoring network of micro-electro-mechanical systems(MEMS)to Zhejiang province.In the Wenzhou Shanxi reservoir and other areas,MEMS and tradi...This paper provides a brief introduction to the application of the sensor monitoring network of micro-electro-mechanical systems(MEMS)to Zhejiang province.In the Wenzhou Shanxi reservoir and other areas,MEMS and traditional intensity-monitoring instruments have been deployed with complementary functions to implement hybrid networking.The low-cost MEMS network can continuously monitor areas at high risk of earthquakes at a high resolution.Moreover,it can quickly collect the parameters of earthquakes and records of the near-field acceleration of strong earthquakes.It can be also used to rapidly generate earthquake intensity reports and provide early warning of earthquakes.We used the MEMS sensors for the first time in 2016,and it has helped promote the development and application of seismic intensity instruments since then.展开更多
[目的]对老年人健康状态变化的准确监测过程中,基础的误差反向传播(back propagation,BP)神经网络难以对柔性传感器测量信号进行精准的校准处理,导致容易出现过拟合现象,使得校准后的信号均方根差(root mean square error,RMSE)较大。因...[目的]对老年人健康状态变化的准确监测过程中,基础的误差反向传播(back propagation,BP)神经网络难以对柔性传感器测量信号进行精准的校准处理,导致容易出现过拟合现象,使得校准后的信号均方根差(root mean square error,RMSE)较大。因此,以面向老年人健康监测的柔性传感器为研究对象,设计一种基于改进GA-BP神经网络的测量信号校准方法。[方法]将卡尔曼滤波算法和滑动平均滤波算法结合起来,对柔性传感器实时测量信号进行混合滤波处理,得到去除噪声干扰的有效信号。通过细分操作将预处理后的信号转换为多个信号子序列,并计算出信号均方根值和波动系数,完成信号特征向量提取。以BP神经网络为核心,构建柔性传感器测量信号校准模型,并应用改进遗传算法(genetic algorithm,GA)对模型参数进行寻优计算,提升网络模型工作性能,将特征向量输入其中自动预测未来时刻健康监测信号变化,对比实时测量信号即可完成校准操作。[结果]实验结果表明:应用该方法对柔性传感器给出的老年人健康监测信号校准后,测量信号的RMSE值低于0.07。[结论]所提出的改进GA-BP神经网络的测量信号校准方法,满足了信号误差校准要求。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
文摘In the contemporary era of unprecedented innovations such as Internet of Things(IoT),modern applications cannot be imagined without the presence of Wireless Sensor Network(WSN).Nodes in WSN use neighbour discovery(ND)protocols to have necessary communication among the nodes.Neighbour discovery process is crucial as it is to be done with energy efficiency and minimize discovery latency and maximize percentage of neighbours discovered.The current ND approaches that are indirect in nature are categorized into methods of removal of active slots from wake-up schedules and intelligent addition of new slots.The two methods are found to have certain drawbacks.Thefirst category disturbs original integrity of wake-up schedules leading to reduced chances of discovering new nodes in WSN as neighbours.When second category is followed,it may have inefficient slots in the wake-up schedules leading to performance degradation.Therefore,the motivation behind the work in this paper is that by combining the two categories,it is possible to reap benefits of both and get rid of the limitations of the both.Making a hybrid is achieved by introducing virtual nodes that help maximize performance by ensuring original integrity of wake-up schedules and adding of efficient active slots.Thus a Hybrid Approach to Neighbour Discovery(HAND)protocol is realized in WSN.The simulation study revealed that HAND outperforms the existing indirect ND models.
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.
文摘Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network consisting of distributed devices distributed at various distances,which monitors the physical and environmental conditions using sensors.Wireless sensor networks have many uses,including the built-in sensor on the outside of the pipeline or installed to support bridge structures,robotics,healthcare,environmental monitoring,etc.Wireless Sensor networks could be used to monitor the temperature,pressure,leak detection and sabotage of transmission lines.Wireless sensor networks are vulnerable to various attacks.Cryptographic algorithms have a good role in information security for wireless sensor networks.Now,various types of cryptographic algorithms provide security in networks,but there are still some problems.In this research,to improve the power of these algorithms,a new hybrid encryption algorithm for monitoring energy transmission lines and increasing the security of wireless sensor networks is proposed.The proposed hybrid encryption algorithm provides the security and timely transmission of data in wireless sensor networks to monitor the transmission pipelines.The proposed algorithm fulfills three principles of cryptography:integrity,confidentiality and authentication.The details of the algorithm and basic concepts are presented in such a way that the algorithm can be operational.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140875)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213084)the National Natural Science Foundation of China(Grant No.61502243)
文摘Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.
文摘Wireless sensor networks (WSNs) are mostly deployed in a remote working environment, since sensor nodes are small in size, cost-efficient, low-power devices, and have limited battery power supply. Because of limited power source, energy consumption has been considered as the most critical factor when designing sensor network protocols. The network lifetime mainly depends on the battery lifetime of the node. The main concern is to increase the lifetime with respect to energy constraints. One way of doing this is by turning off redun-dant nodes to sleep mode to conserve energy while active nodes can provide essential k-coverage, which improves fault-tolerance. Hence, we use scheduling algorithms that turn off redundant nodes after providing the required coverage level k. The scheduling algorithms can be implemented in centralized or localized schemes, which have their own advantages and disadvantages. To exploit the advantages of both schemes, we employ both schemes on the network according to a threshold value. This threshold value is estimated on the performance of WSN based on network lifetime comparison using centralized and localized algorithms. To extend the network lifetime and to extract the useful energy from the network further, we go for compromise in the area covered by nodes.
文摘The Wireless Sensor Networks(WSN)is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission.The clustering technique employed to group the collection of nodes for data transmission and each node is assigned with a cluster head.The major concern with the identification of the cluster head is the consideration of energy consumption and hence this paper proposes an hybrid model which forms an energy efficient cluster head in the Wireless Sensor Network.The proposed model is a hybridization of Glowworm Swarm Optimization(GSO)and Artificial Bee Colony(ABC)algorithm for the better identification of cluster head.The performance of the proposed model is compared with the existing techniques and an energy analysis is performed and is proved to be more efficient than the existing model with normalized energy of 5.35%better value and reduction of time complexity upto 1.46%.Above all,the proposed model is 16%ahead of alive node count when compared with the existing methodologies.
文摘Traditional sensor network and robot navigation are based on the map of detecting fields available in advance. The optimal algorithms are explored to solve the energy saving, shortest path problems, etc. However, in practical environment, there are many fields, whose map is difficult to get, and need to detect. This paper explores a kind of ad-hoc navigation algorithm based on the hybrid sensor network without the prior map. The system of navigation is composed of static nodes and mobile nodes. The static nodes monitor events occurring and broadcast. In the system, a kind of cluster broadcast method is adopted to determine the robot localization. The mobile nodes detect the adversary or dangerous fields and broadcast warning message. Robot gets the message and follows ad-hoc routine to arrive the events occurring place. In the whole process, energy saving has taken into account. The algorithms of nodes and robot are given in this paper. The simulate and practical results are available as well.
基金supported by the National nature Science Fund(No.50875247)
文摘Traditional sensor network and robot navigation are based on the map of detecting the fields available in advance. The optimal algorithms are developed to solve the energy saving, the shortest path problems, etc. However, in the practical enviroranent, there are many fields, whose map is difficult to get, and needs to be detected. In this paper a kind of ad-hoc navigation algorithm is explored, which is based on the hybrid sensor network without the prior map in advance. The navigation system is composed of static nodes and dynamic trades. The static nodes monitor the occurrances of the events and broadcast them. In the syston, a kind of algorithm is to locate the rdbot, which is based on duster broadcasting. The dynamic nodes detect the adversary or dangerous fields and broadcast warning messages. The robot gets the message and follows ad-hoc routine to arrive where the events occur. In the whole process, energy saving has been taken into account. The algorithms, which are based on the hybrid sensor network, are given in this paper. The simulation and practical results are also available.
文摘Hybrid sensor networks (HSNs) comprise of mobile and static sensor nodes setup for purpose of collaboratively performing tasks like sensing a phenomenon or monitoring a region. In this paper, we present target interception as a novel application using mobile sensor nodes as executor. Static sensor nodes sense, compute and communicate with each other for navigation. Mobile nodes are guided to intercept target by the static nodes nearby. Our approach does not require any prior maps of the environment thus, cutting down the cost of the overall energy consumption. As to multi-targets multi-mobile nodes case, we present a PMB algorithm for task assignment. Simulation results have verified the feasibility and effectiveness of our approach proposed.
文摘In order to make up for the deficiencies and insufficiencies that In order to make up for the deficiencies and insufficiencies that wireless sensor network is constituted absolutely by static or dynamic sensor nodes. So a deployment mechanism for hybrid nodes barrier coverage (HNBC)is proposed in wireless sensor network, which collaboratively consists of static and dynamic sensor nodes. We introduced the Voronoi diagram to divide the whole deployment area. According to the principle of least square method, and the static nodes are used to construct the reference barrier line (RBL). And we implemented effectively barrier coverage by monitoring whether there is a coverage hole in the deployment area, and then to determine whether dynamic nodes need limited mobility to redeploy the monitoring area. The simulation results show that the proposed algorithm improved the coverage quality, and completed the barrier coverage with less node moving distance and lower energy consumption, and achieved the expected coverage requirements
文摘Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of research has become increasingly popular due to the host of useful applications it can potentially serve.A deep analysis of the concepts associated with this domain reveals that the two main problems that are to be tackled here are throughput enhancement and network security improvement.The present article takes on one of these two issues namely the throughput enhancement.For the purpose of improving network productivity,a hybrid clustering based packet propagation protocol has been proposed.The protocol makes use of not only clustering mechanisms of machine learning but also utilizes the traditional forwarding function approach to arrive at an optimum model.The result of the simulation is a novel transmission protocol which significantly enhances network productivity and increases throughput value.
文摘This paper provides a brief introduction to the application of the sensor monitoring network of micro-electro-mechanical systems(MEMS)to Zhejiang province.In the Wenzhou Shanxi reservoir and other areas,MEMS and traditional intensity-monitoring instruments have been deployed with complementary functions to implement hybrid networking.The low-cost MEMS network can continuously monitor areas at high risk of earthquakes at a high resolution.Moreover,it can quickly collect the parameters of earthquakes and records of the near-field acceleration of strong earthquakes.It can be also used to rapidly generate earthquake intensity reports and provide early warning of earthquakes.We used the MEMS sensors for the first time in 2016,and it has helped promote the development and application of seismic intensity instruments since then.