In order to clarify the impact of activated carbon and anion exchange resin on photocatalytic oxidation (PCO) of textile industry wastewater, TiO2-based PCO was investigated with aqueous solutions containing the react...In order to clarify the impact of activated carbon and anion exchange resin on photocatalytic oxidation (PCO) of textile industry wastewater, TiO2-based PCO was investigated with aqueous solutions containing the reactive dye Reactive Blue 4 (RB4) and with a textile dye house effluent in the absence and in the presence of powdered activated carbon (PAC) and the anion exchange resin Lewatit MP 500. Addition of Lewatit improved RB4 removal to a larger extent than PAC addition. Contrasting to chloride and sulfate, hydrogen carbonate clearly inhibited PCO of RB4. However, the depression of dye removal by hydrogen carbonate was minute in the presence of Lewatit although the hydrogen carbonate concentration was not markedly decreased. Unfortunately, the beneficial effect of Lewatit addition on PCO nearly disappeared when the Lewatit/TiO2 mixture was reused three times. This was probably caused by oxidative damage of the resin. Color removal from the real dye house effluent during PCO was improved by Lewatit, but not by PAC. Contrastingly, PAC addition increased TOC removal by PCO from the real wastewater to some extent, while Lewatit had no impact. Sorbent addition does not lead to an acceptable area demand for solar PCO of the dye house effluent.展开更多
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid p...Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.展开更多
作为有源相控阵天线阵面的核心部件,收发组件在整个有源天线阵面中的成本占比最高,因此如何降低收发组件的成本是设计天线阵面需要着重考虑的问题。与多芯片收发组件中常用的低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)多层...作为有源相控阵天线阵面的核心部件,收发组件在整个有源天线阵面中的成本占比最高,因此如何降低收发组件的成本是设计天线阵面需要着重考虑的问题。与多芯片收发组件中常用的低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)多层基板相比,多层印制板在成本方面具有很大优势。文中利用混压多层印制板,结合铝合金封装壳体,研制了一款Ku波段四通道低成本收发组件。该收发组件在工作频带内可以实现6位移相和6位幅度衰减,其通道接收增益≥20 dB,通道发射功率≥10 W。文中针对混压多层印制板热膨胀系数高、布线密度低、金丝键合可靠性差等问题,优化了基板叠层方案,研究了高密度互联通孔制作、基板镀层高可靠键合、低成本气密封装等关键工艺技术,有效提升了产品的可靠性,可为低成本混压多层印制板在多芯片组件中的工程化应用提供参考。展开更多
文摘In order to clarify the impact of activated carbon and anion exchange resin on photocatalytic oxidation (PCO) of textile industry wastewater, TiO2-based PCO was investigated with aqueous solutions containing the reactive dye Reactive Blue 4 (RB4) and with a textile dye house effluent in the absence and in the presence of powdered activated carbon (PAC) and the anion exchange resin Lewatit MP 500. Addition of Lewatit improved RB4 removal to a larger extent than PAC addition. Contrasting to chloride and sulfate, hydrogen carbonate clearly inhibited PCO of RB4. However, the depression of dye removal by hydrogen carbonate was minute in the presence of Lewatit although the hydrogen carbonate concentration was not markedly decreased. Unfortunately, the beneficial effect of Lewatit addition on PCO nearly disappeared when the Lewatit/TiO2 mixture was reused three times. This was probably caused by oxidative damage of the resin. Color removal from the real dye house effluent during PCO was improved by Lewatit, but not by PAC. Contrastingly, PAC addition increased TOC removal by PCO from the real wastewater to some extent, while Lewatit had no impact. Sorbent addition does not lead to an acceptable area demand for solar PCO of the dye house effluent.
基金supported by the National Grand Water Project(No.2008ZX07423-002)the National Natural Science Foundation of China(No.50978170)the Guangdong Provincial Funding(No.2012B030800001)
文摘Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.
文摘研究了水力停留时间(HRT)对复合式生物膜-活性污泥工艺处理城市污水效能和反应器中微生物性质的影响.研究结果表明,HRT对系统COD的去除效果影响不大,对氮源污染的影响较大.随着HRT的减少,系统中的污泥质量浓度呈现不断增加的趋势,系统的COD容积去除负荷显著增强.对微生物呼吸速率(OUR)的分析表明,维持较长的HRT能够使反应器内微生物具有更强的活性.因此,建议复合式生物膜-活性污泥工艺合理的HRT的范围为6~8 h.