This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands.To show the necessity of improving the mechanical properties of the coupler’s branch in submil...This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands.To show the necessity of improving the mechanical properties of the coupler’s branch in submillimeter and terahertz bands,a comprehensive study regarding the displacement of hybrid branch variation with varying width-length ratio and height-length ratio has been completed.In addition,a modified 3-dB waveguide hybrid coupler is designed and presented.Compared with the traditional branch structure,the proposed hybrid consists of a modified middle branch with circular cutouts at the top and bottom on both sides instead of the traditional rectangle branch,which increases the branch size and improves its mechanical reliability while achieving the same performance.Simulation results show that the deformation of the modified hybrid branch is 22%less than those of other traditional structure designs under the same stress.In practice,a vibration experiment is set up to verify the mechanical reliability of hybrid couplers.Measurement results show that the experiment deteriorates the coupling performance.Experimental results verify that the performance of the novel structure coupler is better than that of a traditional structure branch hybrid coupler under the same electrical properties.展开更多
Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interlea...Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.展开更多
An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self- developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an Al- GaN/GaN HEMT...An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self- developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an Al- GaN/GaN HEMT, Wilkinson power hybrids, a DC-bias circuit and microstrip matching circuits. For the stability of the amplifier module, special RC networks at the input and output, a resistor between the DC power supply and a transistor gate at the input and 3λ/4 Wilkinson power hybrids are used for the cancellation of low frequency self-oscillation and crosstalk of each amplifier. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5 dB with a power added efficiency of 17.9%, and an output power of 42.93 dBm; the power gain compression is 2 dB. For a four-way combined solid-state amplifier, the power combining efficiency is 67.5%. It is concluded that the reduction in combining efficiency results from the non-identical GaN HMET, the loss of the hybrid coupler and the circuit fabricating errors of each one-way amplifier.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61771116 and 62022022)the National Key R&D Program of China(No.2018YFB1801502)the China Postdoctoral Science Foundation(No.2021TQ0057)。
文摘This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands.To show the necessity of improving the mechanical properties of the coupler’s branch in submillimeter and terahertz bands,a comprehensive study regarding the displacement of hybrid branch variation with varying width-length ratio and height-length ratio has been completed.In addition,a modified 3-dB waveguide hybrid coupler is designed and presented.Compared with the traditional branch structure,the proposed hybrid consists of a modified middle branch with circular cutouts at the top and bottom on both sides instead of the traditional rectangle branch,which increases the branch size and improves its mechanical reliability while achieving the same performance.Simulation results show that the deformation of the modified hybrid branch is 22%less than those of other traditional structure designs under the same stress.In practice,a vibration experiment is set up to verify the mechanical reliability of hybrid couplers.Measurement results show that the experiment deteriorates the coupling performance.Experimental results verify that the performance of the novel structure coupler is better than that of a traditional structure branch hybrid coupler under the same electrical properties.
文摘Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.
基金supported by the National Natural Science Foundation of China(Nos.60736033,60676048).
文摘An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self- developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an Al- GaN/GaN HEMT, Wilkinson power hybrids, a DC-bias circuit and microstrip matching circuits. For the stability of the amplifier module, special RC networks at the input and output, a resistor between the DC power supply and a transistor gate at the input and 3λ/4 Wilkinson power hybrids are used for the cancellation of low frequency self-oscillation and crosstalk of each amplifier. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5 dB with a power added efficiency of 17.9%, and an output power of 42.93 dBm; the power gain compression is 2 dB. For a four-way combined solid-state amplifier, the power combining efficiency is 67.5%. It is concluded that the reduction in combining efficiency results from the non-identical GaN HMET, the loss of the hybrid coupler and the circuit fabricating errors of each one-way amplifier.