Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybri...Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. This latter provides a more accurate description of the lattice parameters, enthalpy of formation, electronic and optical properties of our alloy than standard DFT. We found the transition from wurtzite to rocksalt structures at 61% of Sc concentration. By increasing the scandium concentration, the lattice parameters and the band gap decrease. The HSE band gap is in good agreement with available experimental data. The existence of the strong hybridization between Sc 3d and N 2p indicates the transport of electrons from Sc to N atoms. Besides, it is shown that the insertion of the Sc atom leads to the redshift of the optical absorption edge. The optical absorption of Sc<sub>x</sub>Al<sub>1-x</sub>N is found to decrease with increasing Sc concentrations in the low energy range. Because of this, Sc<sub>x</sub>Al<sub>1-x</sub>N have a great potential for applications in photovoltaics and photocatalysis.展开更多
An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in...An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.展开更多
Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-qui...Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.展开更多
Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks ...Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks under contiguity and continuity of available spectrum constraints. Two main hypotheses are used in this paper for backup paths computation. In the first case, it is assumed that backup paths resources are dedicated. In the second case, the assumption is that backup paths resources are available shared resources. The objective of the study is to minimize spectrum utilization to reduce blocking probability on a network. For this purpose, an efficient survivable Hybrid Protection Lightpath (HybPL) algorithm is proposed for providing shared or dedicated backup path protection based on the efficient energy calculation and resource availability. Traditional First-Fit and Best-Fit schemes are employed to search and assign the available spectrum resources. The simulation results show that HybPL presents better performance in terms of blocking probability, compared with the Minimum Resources Utilization Dedicated Protection (MRU-DP) algorithm which offers better performance than the Dedicated Protection (DP) algorithm.展开更多
The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we inve...The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.展开更多
A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into ...A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process展开更多
Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin sca...Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin scattering(SBS)from bulk acoustic wave in standard optical fiber,SAW and HAW BS,due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively,facilitate innovative detection in optical microfibers sensing.The highest temperature and strain sensitivities of the hybrid acoustic modes(HAMs)are 1.082 MHz/℃and 0.0289 MHz/με,respectively,which is suitable for microfiber sensing applica-tion of high temperature and strain resolutions.Meanwhile,the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes,ranging from 0.05 MHz/℃/μm to 0.25 MHz/℃/μm and 1×10^(-4) MHz/με/μm to 5×10^(-4) MHz/με/μm,respectively.It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers.Besides,the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS,with temperature and strain errors as low as 0.30℃-0.34℃and 14.47με-16.25με.展开更多
Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for ...Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.展开更多
This study develops an optimal performance monitoring metric for a hybrid free space optical and radio wireless network, the Outage Capacity Objective Function. The objective function—the dependence of hybrid channel...This study develops an optimal performance monitoring metric for a hybrid free space optical and radio wireless network, the Outage Capacity Objective Function. The objective function—the dependence of hybrid channel outage capacity upon the error rate, jointly quantifies the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The objective function is developed from the basic information-theoretic capacity of the optical and radio channels using the gamma-gamma model for optical fading and Ricean statistics for the radio channel fading. A simulation is performed by using the hybrid network. The objective function is shown to provide significantly improved sensitivity to degrading performance trends and supports of proactive link failure prediction and mitigation when compared to current thresholding techniques for signal quality metrics.展开更多
In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fib...In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.展开更多
A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP...A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.展开更多
hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) mat...hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.展开更多
We theoretically study the structural, electronic, and optical properties of lithium niobate under pressure using the plane-wave pseudopotential density functional theory by CASTEP code. It was found that there is a p...We theoretically study the structural, electronic, and optical properties of lithium niobate under pressure using the plane-wave pseudopotential density functional theory by CASTEP code. It was found that there is a phase transition from the R3 c structure to the Pnma structure at a pressure of 18.7 GPa. The Pnma structure was dynamically stable according to the calculation of phonon dispersion. From the charge density distributions, there exist covalent interactions along the Nb–O bond. The hybridization between O 2p and Nb 4d orbital in the Pnma phase increases with increasing pressure, while it is not changed in the R3c phase. With increasing pressure, the average Nb–O bond length decreases and the Nb–O bond population increases, indicating the increased covalent character between Nb and O atoms under high pressure at Pnma phase, which leads to the increased hybridization between O 2p and Nb 4d orbitals. Furthermore, the optical dielectric function, refractive index, extinction coefficient, electron energy, loss and reflectivity are calculated.展开更多
We report an optical spectroscopy study on intermediate valence system Ybl-xLuxA13 with x = 0, 0.25, 0.5, 0.75, and 1. The Kondo temperature in the system is known to increase with increasing Lu concentration. Therefo...We report an optical spectroscopy study on intermediate valence system Ybl-xLuxA13 with x = 0, 0.25, 0.5, 0.75, and 1. The Kondo temperature in the system is known to increase with increasing Lu concentration. Therefore, it is expected that the energy scale of the hybridization gap should increase with increasing Lu concentration based on the periodic Anderson model. On the contrary, we find that the spectral structure associated with the hybridization effect shifts monotonically to lower energy. Furthermore, the Lu substitution results in a substantial increase of the free carrier spectral weight and less pronounced plasma frequency reduction upon lowering temperature. We attribute the effect to the disruption of the Kondo lattice periodicity by the random substitution of Yb by Lu. The work highlights the importance of the lattice periodicity of the rare earth element for understanding the Kondo lattice phenomena.展开更多
All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversi...All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc. Opti- cal switching/routing is in fact wavelength switching/ routing. OXC and wavelength conversion (WC) are introduced into cross nodes so that a virtual wavelength path is established. With WC, communication route is formed only if there is unused wavelength in an individual segment link. The rate wavelength usage is thus greatly increased. The blocking rate of network can be reduced by adding WCs, especially for huge capacity multiple nodes ones. Therefore, WC has attracted much attention in basic research of optical communication and is used in some experimental networks.This dissertation studies all optic wavelength conversion and its application, with the contributions in the following five aspects.展开更多
ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solutio...ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solution, and the ZnO precursors, i.e. the ethanol solu- tions of (CHaCOO)2Zn and LiOH. The transmission electron microscope, X-ray diffraction, and thermogravimetric analysis results show that the feeding order of ethanol solutions of (CH3COO)2Zn and LiOH in the second swelling step has great influence on the loading efficiency and the size of ZnO nanoparticles, but little on their crystal form. The photolumi- nescence and UV-Vis absorption behavior of ZnO/PS microspheres show that the PS shell can effectively avoid the fluorescence quenching effect.展开更多
We theoretically analyze a hybrid system consisting of a levitated neutral atom and a nanoparticle coupled to a cavity.The mechanical oscillator and the atom are effectively coupled to each other through the cavity ph...We theoretically analyze a hybrid system consisting of a levitated neutral atom and a nanoparticle coupled to a cavity.The mechanical oscillator and the atom are effectively coupled to each other through the cavity photons as a bus.By adjusting the driving lasers,we can conveniently switch the phonon-atom coupling between Jaynes-Cummings(JC)and anti-JC forms,which can be used to manipulate the motional states of the mechanical oscillator.As an application,we prepare a superposition state of the mechanical oscillator via the effective phonon-atom interaction and investigate the effects of dissipation on the state generation.展开更多
The generation characteristics of nonlinear optical signals and their multi-dimensional modulation at micro-nano scale have become a prominent research area in nanophotonics,and also the key to developing various nove...The generation characteristics of nonlinear optical signals and their multi-dimensional modulation at micro-nano scale have become a prominent research area in nanophotonics,and also the key to developing various novel nonlinear photonics devices.In recent years,the demand for higher nonlinear conversion efficiency and device integration has led to the rapid progress of hybrid nonlinear metasurfaces composed of nanostructures and nonlinear materials.As a joint platform of stable wavefront modulation,nonlinear metasurface and efficient frequency conversion,hybrid nonlinear metasurfaces offer a splendid opportunity for developing the next-generation of multipurpose flat-optics devices.This article provides a comprehensive review of recent advances in hybrid nonlinear metasurfaces for light-field modulation.The advantages of hybrid systems are discussed from the perspectives of multifunctional light-field modulation,valleytronic modulation,and quantum technologies.Finally,the remaining challenges of hybrid metasurfaces are summarized and future developments are also prospected.展开更多
文摘Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. This latter provides a more accurate description of the lattice parameters, enthalpy of formation, electronic and optical properties of our alloy than standard DFT. We found the transition from wurtzite to rocksalt structures at 61% of Sc concentration. By increasing the scandium concentration, the lattice parameters and the band gap decrease. The HSE band gap is in good agreement with available experimental data. The existence of the strong hybridization between Sc 3d and N 2p indicates the transport of electrons from Sc to N atoms. Besides, it is shown that the insertion of the Sc atom leads to the redshift of the optical absorption edge. The optical absorption of Sc<sub>x</sub>Al<sub>1-x</sub>N is found to decrease with increasing Sc concentrations in the low energy range. Because of this, Sc<sub>x</sub>Al<sub>1-x</sub>N have a great potential for applications in photovoltaics and photocatalysis.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2015AA016902the National Natural Science Foundation of China under Grant Nos 61435013 and 61405188the K.C.Wong Education Foundation
文摘An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.
文摘Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.
文摘Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks under contiguity and continuity of available spectrum constraints. Two main hypotheses are used in this paper for backup paths computation. In the first case, it is assumed that backup paths resources are dedicated. In the second case, the assumption is that backup paths resources are available shared resources. The objective of the study is to minimize spectrum utilization to reduce blocking probability on a network. For this purpose, an efficient survivable Hybrid Protection Lightpath (HybPL) algorithm is proposed for providing shared or dedicated backup path protection based on the efficient energy calculation and resource availability. Traditional First-Fit and Best-Fit schemes are employed to search and assign the available spectrum resources. The simulation results show that HybPL presents better performance in terms of blocking probability, compared with the Minimum Resources Utilization Dedicated Protection (MRU-DP) algorithm which offers better performance than the Dedicated Protection (DP) algorithm.
基金Project supported by the Youth Innovation Promotion Association CASState Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222)
文摘The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)the Fundamental Research Funds for the Central Universities,China (Grant Nos. ZYGX2011YB020 and ZYGX2010J112)
文摘A novel optical beam splitter constructed on the basis of photonic crystal(PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process
基金Project supported by the National Science Fund for Distinguished Young Scholars(Grant Nos.61705157 and 61805167)the National Natural Science Foundation of China(Grant Nos.61975142 and 11574228)+2 种基金China Postdoctoral Science Foundation(Grant No.2020M682113)the Key Research and Development Projects of Shanxi Province,China(Grant No.201903D121124)Research Project Supported by Shanxi Scholarship Council of China(Grant No.2020-112).
文摘Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin scattering(SBS)from bulk acoustic wave in standard optical fiber,SAW and HAW BS,due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively,facilitate innovative detection in optical microfibers sensing.The highest temperature and strain sensitivities of the hybrid acoustic modes(HAMs)are 1.082 MHz/℃and 0.0289 MHz/με,respectively,which is suitable for microfiber sensing applica-tion of high temperature and strain resolutions.Meanwhile,the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes,ranging from 0.05 MHz/℃/μm to 0.25 MHz/℃/μm and 1×10^(-4) MHz/με/μm to 5×10^(-4) MHz/με/μm,respectively.It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers.Besides,the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS,with temperature and strain errors as low as 0.30℃-0.34℃and 14.47με-16.25με.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB315800the National Natural Science Foundation of China under Grants No.61275077,No.61071117,No.61171158,No.61102131+1 种基金the Natural Science Foundation Project of CQ,CSTC under GrantsNo.2009BB2285,No.2008BB2414,No.2010BB2413,No.2010BB2409,No.2010BB2413the Projects of the Education Council of Chongqing under Grants No.KJ080513,No.KJ080522,No.KJ110519,No.KJ110527
文摘Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.
文摘This study develops an optimal performance monitoring metric for a hybrid free space optical and radio wireless network, the Outage Capacity Objective Function. The objective function—the dependence of hybrid channel outage capacity upon the error rate, jointly quantifies the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The objective function is developed from the basic information-theoretic capacity of the optical and radio channels using the gamma-gamma model for optical fading and Ricean statistics for the radio channel fading. A simulation is performed by using the hybrid network. The objective function is shown to provide significantly improved sensitivity to degrading performance trends and supports of proactive link failure prediction and mitigation when compared to current thresholding techniques for signal quality metrics.
基金This work was supported by National Key Research and Development Program of China(2018YFB2201101)the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDB43000000Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park No.Z201100004020004。
文摘In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61307033,61274070,61137003 and 61321063
文摘A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.
基金Plan Project of Science and Technology of Guangzhou City (2002J1-C0061) The First Author: XI Hongxia(1968-)
文摘hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.11347154 and 51172194)the Foundation of Xuzhou Institute of Technology,China(Grant No.XKY2013203)
文摘We theoretically study the structural, electronic, and optical properties of lithium niobate under pressure using the plane-wave pseudopotential density functional theory by CASTEP code. It was found that there is a phase transition from the R3 c structure to the Pnma structure at a pressure of 18.7 GPa. The Pnma structure was dynamically stable according to the calculation of phonon dispersion. From the charge density distributions, there exist covalent interactions along the Nb–O bond. The hybridization between O 2p and Nb 4d orbital in the Pnma phase increases with increasing pressure, while it is not changed in the R3c phase. With increasing pressure, the average Nb–O bond length decreases and the Nb–O bond population increases, indicating the increased covalent character between Nb and O atoms under high pressure at Pnma phase, which leads to the increased hybridization between O 2p and Nb 4d orbitals. Furthermore, the optical dielectric function, refractive index, extinction coefficient, electron energy, loss and reflectivity are calculated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11327806 and GZ1123)the National Key Research and Development Program of China(Grant Nos.2016YFA0300902 and 2017YFA0302904)
文摘We report an optical spectroscopy study on intermediate valence system Ybl-xLuxA13 with x = 0, 0.25, 0.5, 0.75, and 1. The Kondo temperature in the system is known to increase with increasing Lu concentration. Therefore, it is expected that the energy scale of the hybridization gap should increase with increasing Lu concentration based on the periodic Anderson model. On the contrary, we find that the spectral structure associated with the hybridization effect shifts monotonically to lower energy. Furthermore, the Lu substitution results in a substantial increase of the free carrier spectral weight and less pronounced plasma frequency reduction upon lowering temperature. We attribute the effect to the disruption of the Kondo lattice periodicity by the random substitution of Yb by Lu. The work highlights the importance of the lattice periodicity of the rare earth element for understanding the Kondo lattice phenomena.
文摘All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc. Opti- cal switching/routing is in fact wavelength switching/ routing. OXC and wavelength conversion (WC) are introduced into cross nodes so that a virtual wavelength path is established. With WC, communication route is formed only if there is unused wavelength in an individual segment link. The rate wavelength usage is thus greatly increased. The blocking rate of network can be reduced by adding WCs, especially for huge capacity multiple nodes ones. Therefore, WC has attracted much attention in basic research of optical communication and is used in some experimental networks.This dissertation studies all optic wavelength conversion and its application, with the contributions in the following five aspects.
文摘ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solution, and the ZnO precursors, i.e. the ethanol solu- tions of (CHaCOO)2Zn and LiOH. The transmission electron microscope, X-ray diffraction, and thermogravimetric analysis results show that the feeding order of ethanol solutions of (CH3COO)2Zn and LiOH in the second swelling step has great influence on the loading efficiency and the size of ZnO nanoparticles, but little on their crystal form. The photolumi- nescence and UV-Vis absorption behavior of ZnO/PS microspheres show that the PS shell can effectively avoid the fluorescence quenching effect.
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ22A040010)the Major Scientific Research Project of Zhejiang Lab(Grant No.2019 MB0AD01)。
文摘We theoretically analyze a hybrid system consisting of a levitated neutral atom and a nanoparticle coupled to a cavity.The mechanical oscillator and the atom are effectively coupled to each other through the cavity photons as a bus.By adjusting the driving lasers,we can conveniently switch the phonon-atom coupling between Jaynes-Cummings(JC)and anti-JC forms,which can be used to manipulate the motional states of the mechanical oscillator.As an application,we prepare a superposition state of the mechanical oscillator via the effective phonon-atom interaction and investigate the effects of dissipation on the state generation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274157,12274334,91850113,12021004,and 11904271)the Natural Science Foundation of Hubei Province of China(Grant No.2023AFA076)the Basic and Applied Basic Research Major Program of Guangdong Province of China(Grant No.2019B030302003)。
文摘The generation characteristics of nonlinear optical signals and their multi-dimensional modulation at micro-nano scale have become a prominent research area in nanophotonics,and also the key to developing various novel nonlinear photonics devices.In recent years,the demand for higher nonlinear conversion efficiency and device integration has led to the rapid progress of hybrid nonlinear metasurfaces composed of nanostructures and nonlinear materials.As a joint platform of stable wavefront modulation,nonlinear metasurface and efficient frequency conversion,hybrid nonlinear metasurfaces offer a splendid opportunity for developing the next-generation of multipurpose flat-optics devices.This article provides a comprehensive review of recent advances in hybrid nonlinear metasurfaces for light-field modulation.The advantages of hybrid systems are discussed from the perspectives of multifunctional light-field modulation,valleytronic modulation,and quantum technologies.Finally,the remaining challenges of hybrid metasurfaces are summarized and future developments are also prospected.