A more accurate analysis method on working modes is proposed by considering the winding terminal voltage and the eondueting power device as state parameters. For the three-phase hybrid excitation doubly salient machi...A more accurate analysis method on working modes is proposed by considering the winding terminal voltage and the eondueting power device as state parameters. For the three-phase hybrid excitation doubly salient machine (HEDSM) motor and its three-phase full-bridge inverter, in the proposed analytical method, all possible working modes are generally listed. Then, with the H_PWM-L_ON control strategy, the working modes are detailed with eorresponding equivalent circuits. Experimental results verify the robustness of the analysis.展开更多
To solve the low efficiency of electric excitation claw-pole synchronous generator(EECPSG) and regulate the magnetic field of permanent magnet (PM) claw-pole synchronous generator(PMCPSG), a novel hybrid excitat...To solve the low efficiency of electric excitation claw-pole synchronous generator(EECPSG) and regulate the magnetic field of permanent magnet (PM) claw-pole synchronous generator(PMCPSG), a novel hybrid excitation claw-pole synchronous generator (HECPSG)with magnetic circuit series connection is proposed. Through the simulation study on the generator using the calculation method for magnetic circuit and 3-D finite element method (FEA), the appropriate magnet thickness and the number of pole-pairs for the proposed generator are determined. Its off-loading characteristics, load characteristics, and regulation behaviors are investigated. The study shows that the appropriate number of pole-pairs in HECPSG with series magnetic circuits is two, and there exists an optimum magnet thickness. Compared to EECPSG, HECPSG realizes dual-directional control to the excitation current. Moreover, the generator can adjust the output voltage and keep the output voltage stable in a broad load range. Under the condition of same parametes, the motor has higer air-gap flux density and power density.展开更多
Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron e...Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.展开更多
Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind...Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.展开更多
Hybrid excitation motor is a combination of permanent magnet motor and electric excitation motor,which can flexibly adjust the air gap magnetic field.At present,the traditional silicon steel sheet core material is wid...Hybrid excitation motor is a combination of permanent magnet motor and electric excitation motor,which can flexibly adjust the air gap magnetic field.At present,the traditional silicon steel sheet core material is widely used,but this material limits the further reduction of stator iron loss.In this paper,a new type of hybrid excitation synchronous motor with modular stator structure based on amorphous alloy material is proposed.The design power is 1kW,and the speed is 3000rpm.By placing the armature winding and electric excitation winding in the stator slot,the slip ring and brush are avoided,and the reliability of the motor is improved.The rotor adopts staggered magnetic pole structure,which has strong flux adjusting ability.The core loss is greatly reduced by using amorphous alloy.Firstly,the structure and working principle of the new motor are given;Secondly,the size parameters of the motor are given,and the principle of flux adjustment is verified and analyzed by three-dimensional finite element(3D-FEM);Finally,through theoretical analysis of the influence factors of the magnetic adjustment ability and 3D-FEM finite element computation,the flux adjustment ability and the torque lifting at low speed are verified,and the advantages of the motor are verified.展开更多
A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled...A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.展开更多
Compared to the current eddy braking patterns using a single magnetic source,hybrid excitation rail eddy brakes have many advantages,such as controllability,energy saving,and various operating models.Considering the l...Compared to the current eddy braking patterns using a single magnetic source,hybrid excitation rail eddy brakes have many advantages,such as controllability,energy saving,and various operating models.Considering the large braking power consumption of the high-speed train,a hybrid excitation rail eddy brake system,which is based on the principle of electromagnetic field,is proposed to fulfill the needs of safety and reliability.Then the working processes of the mechanical lifting system and electromagnetic system are demonstrated.With the electromagnetic system analyzed using the finite element method,the factors such as speed,air gap,and exciting current have influences on the braking force and attractive force.At last,the structure optimization of the brake system is discussed.展开更多
In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this ...In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this paper.Generally,the analysis of back-EMF for the machine with complex electromagnetic structure such as DCHES machine should utilize 3-D finite element analysis(FEA),which will require huge resources and computing time.In order to avoid using 3-D FEA to analyze the back-EMF of complex structure,an analytical method of calculating back-EMF is presented in this paper.The electromagnetic field in 3-D space can be simplified as a 2-D field by dividing the 3-D field into several simple zones,the resultant effect equals to the summation of every single 2-D field's effect.According to electromagnetic theory,the analytical formula of back-EMF is obtained on the basis of Fourier series.The influence of main parameters on back-EMF waveform under sine and trapezoidal flux distribution is discussed respectively.The theoretical result shows that the trapezoidal air-gap flux distribution would generate a sine back-EMF.Finally,the presented analytical method is verified and evaluated with experimental results.展开更多
On the basis of a conventional permanent magnet(PM)synchronous generator’s construction,a novel kind of Hybrid Excitation Permanent Magnet Synchronous Generator(HEPMSG)is introduced by inserting exciting winding in t...On the basis of a conventional permanent magnet(PM)synchronous generator’s construction,a novel kind of Hybrid Excitation Permanent Magnet Synchronous Generator(HEPMSG)is introduced by inserting exciting winding in the stator or rotor.Firstly,the construction of HEPMSG is improved with the addition of PM excitation on the ferromagnetic pole,and its working principle and design method are studied in detail.Then,an appropriate exciting current control system is presented considering the characteristics of HEPMSG.Finally,a prototype is made,and test results confirm the analysis and design.展开更多
This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The...This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.展开更多
This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and...This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and interior PM machines,electrically and mechanically adjusted variable flux PM machines including memory machine,hybrid PM machines which uniquely integrate PM technology into induction machines,switched and synchronous reluctance machines and wound field machines,Halbach PM machines,dual-rotor PM machines,and magnetically geared PM machines,etc.The paper highlights their features and applications to various market sectors.展开更多
Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbid...Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.展开更多
In this paper,an outer-rotor parallel-hybrid-excited vernier machine is proposed.In order to realize the parallel hybrid excitation,the homopolar configuration is adopted to artfully combine the permanent magnet(PM)fl...In this paper,an outer-rotor parallel-hybrid-excited vernier machine is proposed.In order to realize the parallel hybrid excitation,the homopolar configuration is adopted to artfully combine the permanent magnet(PM)flux path and the electromagnet flux path together.Firstly,the structure of the proposed machine is presented.Secondly,its operating principle is studied and discussed.Thirdly,its performance for flux regulation is analyzed based on the 3-D finite element analysis.Finally,the prototype of the proposed machine is manufactured and tested to verify the analytical results.展开更多
With the development of more electric aircraft(MEA),higher demands for electrical energy are put forward in generation systems.Compared to constant frequency AC(CFAC)generation systems,the constant speed drive(CSD)is ...With the development of more electric aircraft(MEA),higher demands for electrical energy are put forward in generation systems.Compared to constant frequency AC(CFAC)generation systems,the constant speed drive(CSD)is eliminated and integrated starter/generator(SG)can be realized in variable frequency AC(VFAC)generation systems.In this paper,an overview of VFAC generators for safety-critical aircraft applications is presented,with a particular focus on the key features and requirements of candidate generators and the starting control strategies.Wound rotor synchronous machines(WRSMs)are typical generators used in VFAC generation systems so far.Meanwhile,hybrid excitation synchronous machines(HESMs)and cage-type induction machines are promising candidates for VFAC generation systems.The generation operation of WRSM is relatively mature,however,the SG technology of WRSM is still full of challenges.As one of the most important issues,the starting excitation methods of WRSM are summarized.An HESM-based VFAC SG system is proposed and developed in this paper.The experimental results show that the starting mode,transition mode and generating mode of the VFAC SG system are realized.The continuous progress of VFAC generation system makes great contributions to the realization of MEA.展开更多
Flux adjustable permanent magnet machines(FAPMMs)are a novel type of permanent magnet(PM)machines which are able to flexibly adjust the field excitation flux linkage and offer the distinctive advantages of high power ...Flux adjustable permanent magnet machines(FAPMMs)are a novel type of permanent magnet(PM)machines which are able to flexibly adjust the field excitation flux linkage and offer the distinctive advantages of high power density and high efficiency.They have attracted ever-increasing interests and are promising candidate machines for electric vehicle,machine-tool and aircraft applications.In this paper,the state-of-the-art of various FAPMMs are comprehensively reviewed according to three means of flux-adjustment,i.e.electrically adjusted by either auxiliary field windings or armature winding change,mechanically adjusted magnetic reluctances of flux paths,and memory machines by magnetizing/demagnetizing PMs.The corresponding flux-adjustable principles and electromagnetic characteristics are systematically elaborated and quantitatively compared.Their merits and demerits are highlighted,together with their recent developments.展开更多
文摘A more accurate analysis method on working modes is proposed by considering the winding terminal voltage and the eondueting power device as state parameters. For the three-phase hybrid excitation doubly salient machine (HEDSM) motor and its three-phase full-bridge inverter, in the proposed analytical method, all possible working modes are generally listed. Then, with the H_PWM-L_ON control strategy, the working modes are detailed with eorresponding equivalent circuits. Experimental results verify the robustness of the analysis.
基金Supported by the National Natural Science Foundation of China(50337030)the Natural Science Foundation of Shanghai(08ZR1408600)the Natural Science Foundation of Shanghai Dianji University(08C410)~~
文摘To solve the low efficiency of electric excitation claw-pole synchronous generator(EECPSG) and regulate the magnetic field of permanent magnet (PM) claw-pole synchronous generator(PMCPSG), a novel hybrid excitation claw-pole synchronous generator (HECPSG)with magnetic circuit series connection is proposed. Through the simulation study on the generator using the calculation method for magnetic circuit and 3-D finite element method (FEA), the appropriate magnet thickness and the number of pole-pairs for the proposed generator are determined. Its off-loading characteristics, load characteristics, and regulation behaviors are investigated. The study shows that the appropriate number of pole-pairs in HECPSG with series magnetic circuits is two, and there exists an optimum magnet thickness. Compared to EECPSG, HECPSG realizes dual-directional control to the excitation current. Moreover, the generator can adjust the output voltage and keep the output voltage stable in a broad load range. Under the condition of same parametes, the motor has higer air-gap flux density and power density.
基金This paper is based on results obtained from the future pioneering program"Development of Magnetic Material Technology for High-efficiency Motors"commissioned by the New Energy and Industrial Technology Development Organization(NEDO)。
文摘Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.
基金This work has been supported by the National Natural Science Foundation of China(51907129)Project Supported by department of education of Liaoning Province(LQGD2019006).
文摘Hybrid excitation motor is a combination of permanent magnet motor and electric excitation motor,which can flexibly adjust the air gap magnetic field.At present,the traditional silicon steel sheet core material is widely used,but this material limits the further reduction of stator iron loss.In this paper,a new type of hybrid excitation synchronous motor with modular stator structure based on amorphous alloy material is proposed.The design power is 1kW,and the speed is 3000rpm.By placing the armature winding and electric excitation winding in the stator slot,the slip ring and brush are avoided,and the reliability of the motor is improved.The rotor adopts staggered magnetic pole structure,which has strong flux adjusting ability.The core loss is greatly reduced by using amorphous alloy.Firstly,the structure and working principle of the new motor are given;Secondly,the size parameters of the motor are given,and the principle of flux adjustment is verified and analyzed by three-dimensional finite element(3D-FEM);Finally,through theoretical analysis of the influence factors of the magnetic adjustment ability and 3D-FEM finite element computation,the flux adjustment ability and the torque lifting at low speed are verified,and the advantages of the motor are verified.
基金Project supported by Delta Power Electronic Science and Education Development (Grant No.DRES2007002)
文摘A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.
基金Project supported by the National Natural Science Foundation of China(Nos.50877070 and 51105331)the Special Financial Grant from the China Postdoctoral Science Foundation(Nos.201104720 and 201104721)
文摘Compared to the current eddy braking patterns using a single magnetic source,hybrid excitation rail eddy brakes have many advantages,such as controllability,energy saving,and various operating models.Considering the large braking power consumption of the high-speed train,a hybrid excitation rail eddy brake system,which is based on the principle of electromagnetic field,is proposed to fulfill the needs of safety and reliability.Then the working processes of the mechanical lifting system and electromagnetic system are demonstrated.With the electromagnetic system analyzed using the finite element method,the factors such as speed,air gap,and exciting current have influences on the braking force and attractive force.At last,the structure optimization of the brake system is discussed.
基金Supported in part by the Natural Science Foundation of Henan Province under Grant 162300410319the Education Department of Henan Province under Grant 16A470026,Zhengzhou University of Light Industry under Grant 2014BSJJ040the office of Science and Technology in Henan Province under Grant 172102310254.
文摘In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this paper.Generally,the analysis of back-EMF for the machine with complex electromagnetic structure such as DCHES machine should utilize 3-D finite element analysis(FEA),which will require huge resources and computing time.In order to avoid using 3-D FEA to analyze the back-EMF of complex structure,an analytical method of calculating back-EMF is presented in this paper.The electromagnetic field in 3-D space can be simplified as a 2-D field by dividing the 3-D field into several simple zones,the resultant effect equals to the summation of every single 2-D field's effect.According to electromagnetic theory,the analytical formula of back-EMF is obtained on the basis of Fourier series.The influence of main parameters on back-EMF waveform under sine and trapezoidal flux distribution is discussed respectively.The theoretical result shows that the trapezoidal air-gap flux distribution would generate a sine back-EMF.Finally,the presented analytical method is verified and evaluated with experimental results.
基金supported by the National High Technology Research and Development Program of China Key Project (No.Z37-03).
文摘On the basis of a conventional permanent magnet(PM)synchronous generator’s construction,a novel kind of Hybrid Excitation Permanent Magnet Synchronous Generator(HEPMSG)is introduced by inserting exciting winding in the stator or rotor.Firstly,the construction of HEPMSG is improved with the addition of PM excitation on the ferromagnetic pole,and its working principle and design method are studied in detail.Then,an appropriate exciting current control system is presented considering the characteristics of HEPMSG.Finally,a prototype is made,and test results confirm the analysis and design.
文摘This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.
基金the financial support by the Engineering and Physics Science Research Council,UK,Ref.EP/F016506/1
文摘This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and interior PM machines,electrically and mechanically adjusted variable flux PM machines including memory machine,hybrid PM machines which uniquely integrate PM technology into induction machines,switched and synchronous reluctance machines and wound field machines,Halbach PM machines,dual-rotor PM machines,and magnetically geared PM machines,etc.The paper highlights their features and applications to various market sectors.
基金supported by the National Key R&D Program of China(grant no.2020YFA0709900)the National Natural Science Foundation of China(grant nos.21971041,22201042,22027805,62134003,and 22104016)+2 种基金the Natural Science Foundation of Fujian Province(grant nos.2020J01447,2022J06008,and 2022J0121)the Research Foundation of Education Bureau of Fujian Province(grant no.JAT210001)the Fuzhou University Testing Fund of Precious Apparatus(grant no.2022T001).
文摘Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.
基金Supported in part by the National Natural Science Foundation of China under Grant 51607114in part by China Postdoctoral Science Foundation under Grant 2016M600673in part by Research Council of the University of Macao under Grant MYRG2017-00158-FST.
文摘In this paper,an outer-rotor parallel-hybrid-excited vernier machine is proposed.In order to realize the parallel hybrid excitation,the homopolar configuration is adopted to artfully combine the permanent magnet(PM)flux path and the electromagnet flux path together.Firstly,the structure of the proposed machine is presented.Secondly,its operating principle is studied and discussed.Thirdly,its performance for flux regulation is analyzed based on the 3-D finite element analysis.Finally,the prototype of the proposed machine is manufactured and tested to verify the analytical results.
基金Supported by the National Natural Science Foundation for Outstanding Young Scholar of China under Award 51622704Jiangsu Provincial Science Funds for Distinguished Young Scientists under Award BK20150033.
文摘With the development of more electric aircraft(MEA),higher demands for electrical energy are put forward in generation systems.Compared to constant frequency AC(CFAC)generation systems,the constant speed drive(CSD)is eliminated and integrated starter/generator(SG)can be realized in variable frequency AC(VFAC)generation systems.In this paper,an overview of VFAC generators for safety-critical aircraft applications is presented,with a particular focus on the key features and requirements of candidate generators and the starting control strategies.Wound rotor synchronous machines(WRSMs)are typical generators used in VFAC generation systems so far.Meanwhile,hybrid excitation synchronous machines(HESMs)and cage-type induction machines are promising candidates for VFAC generation systems.The generation operation of WRSM is relatively mature,however,the SG technology of WRSM is still full of challenges.As one of the most important issues,the starting excitation methods of WRSM are summarized.An HESM-based VFAC SG system is proposed and developed in this paper.The experimental results show that the starting mode,transition mode and generating mode of the VFAC SG system are realized.The continuous progress of VFAC generation system makes great contributions to the realization of MEA.
文摘Flux adjustable permanent magnet machines(FAPMMs)are a novel type of permanent magnet(PM)machines which are able to flexibly adjust the field excitation flux linkage and offer the distinctive advantages of high power density and high efficiency.They have attracted ever-increasing interests and are promising candidate machines for electric vehicle,machine-tool and aircraft applications.In this paper,the state-of-the-art of various FAPMMs are comprehensively reviewed according to three means of flux-adjustment,i.e.electrically adjusted by either auxiliary field windings or armature winding change,mechanically adjusted magnetic reluctances of flux paths,and memory machines by magnetizing/demagnetizing PMs.The corresponding flux-adjustable principles and electromagnetic characteristics are systematically elaborated and quantitatively compared.Their merits and demerits are highlighted,together with their recent developments.