The density inversion of gravity gradiometry data has attracted considerable attention;however,in large datasets,the multiplicity and low depth resolution as well as efficiency are constrained by time and computer mem...The density inversion of gravity gradiometry data has attracted considerable attention;however,in large datasets,the multiplicity and low depth resolution as well as efficiency are constrained by time and computer memory requirements.To solve these problems,we improve the reweighting focusing inversion and probability tomography inversion with joint multiple tensors and prior information constraints,and assess the inversion results,computing efficiency,and dataset size.A Message Passing Interface(MPI)-Open Multi-Processing(OpenMP)-Computed Unified Device Architecture(CUDA)multilevel hybrid parallel inversion,named Hybrinv for short,is proposed.Using model and real data from the Vinton Dome,we confirm that Hybrinv can be used to compute the density distribution.For data size of 100×100×20,the hybrid parallel algorithm is fast and based on the run time and scalability we infer that it can be used to process the large-scale data.展开更多
We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on ...We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on the two most time-consuming sections in the finite DMRG sweeps,i.e.,the diagonalization of superblock and the truncation of subblock,we optimize our previous hybrid algorithm to achieve better performance.For the former,we adopt OpenMP application programming interface on CPU and use our own subroutines with higher bandwidth on GPU.For the later,we use GPU to accelerate matrix and vector operations involving the reduced density matrix.Applying the parallel scheme to the Hubbard model with next-nearest hopping on the 4-leg ladder,we compute the ground state of the system and obtain the charge stripe pattern which is usually observed in high temperature superconductors.Based on simulations with different numbers of DMRG kept states,we show significant performance improvement and computational time reduction with the optimized parallel algorithm.Our hybrid parallel strategy with superiority in solving the ground state of quasi-two dimensional lattices is also expected to be useful for other DMRG applications with large numbers of kept states,e.g.,the time dependent DMRG algorithms.展开更多
An efficient MPI/OpenMP hybrid parallel Radial Basis Function (RBF) strategy for both continuous and discontinuous large-scale mesh deformation is proposed to reduce the computational cost and memory consumption.Unlik...An efficient MPI/OpenMP hybrid parallel Radial Basis Function (RBF) strategy for both continuous and discontinuous large-scale mesh deformation is proposed to reduce the computational cost and memory consumption.Unlike the conventional parallel methods in which all processors use the same surface displacement and implement the same operation,the present method employs different surface points sets and influence radius for each volume point movement,accompanied with efficient geometry searching strategy.The deformed surface points,also called Control Points (CPs),are stored in each processor.The displacement of spatial points is interpolated by using only 20-50 nearest control points,and the local influence radius is set to 5-20 times the maximum displacement of control points.To shorten the searching time for the nearest control point clouds,an Alternating Digital Tree (ADT) algorithm for 3D complex geometry is designed based on an iterative bisection technique.Besides,an MPI/OpenMP hybrid parallel approach is developed to reduce the memory cost in each High-Performance Computing (HPC) node for large-scale applications.Three 3D cases,including the ONERA-M6 wing and a commercial transport airplane standard model with up to 2.5 billion hybrid elements,are used to test the present mesh deformation method.The robustness and high parallel efficiency are demonstrated by a wing deflection case with a maximum bending angle of 450 and more than 80% parallel efficiency with 1024 MPI processors.In addition,the availability for both continuous and discontinuous surface deformation is verified by interpolating the projecting displacement with opposite directions surface points to the spatial points.展开更多
Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation ...Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneousmulticore clusters.To solve it,a hybrid hierarchical parallel algorithm(HHPA)is proposed on the basis of the conventional domain decomposition algorithm(CDDA)and the parallel sparse solver.In this new algorithm,a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes,heterogeneous-core-groups(HCGs)and inside-heterogeneous-core-groups through mapping computing tasks to various hardware layers.This approach can not only achieve load balancing at different layers efficiently but can also improve the communication rate significantly through hierarchical communication.Additionally,the proposed hybrid parallel approach in this article can reduce the interface equation size and further reduce the solution time,which can make up for the shortcoming of growing communication overheads with the increase of interface equation size when employing CDDA.Moreover,the distributed sparse storage of a large amount of data is introduced to improve memory access.By solving benchmark instances on the Shenwei-Taihuzhiguang supercomputer,the results show that the proposed method can obtain higher speedup and parallel efficiency compared with CDDA and more superior extensibility of parallel partition compared with the two-level parallel computing algorithm(TPCA).展开更多
Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driv...Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level.展开更多
A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy ...A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids...We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations.Surface multiples dominate wavefields for shallow event.Core–mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
In this paper,a drive control strategy is developed based on the characteristics of series-parallel plug-in hybrid system.Energy management strategies in various modes are established with the basis on the minimum bra...In this paper,a drive control strategy is developed based on the characteristics of series-parallel plug-in hybrid system.Energy management strategies in various modes are established with the basis on the minimum brake specific fuel consumption(BSFC)curve of engine.The control strategy,which is based on rules and system efficiency,is adopted to determine the entry/exit mechanisms of various modes according to battery state of charge(SOC),required power and required speed.The vehicle test results verify that the proposed control strategy can improve vehicle economy efficiently and makes a good effect on engine control.展开更多
Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integratio...Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.展开更多
Based on the efficient hybrid methods for solving initial value problems of stiff ODEs, this paper derives a parallel scheme that can be used to solve the problems on parallel computers with N processors, and discusse...Based on the efficient hybrid methods for solving initial value problems of stiff ODEs, this paper derives a parallel scheme that can be used to solve the problems on parallel computers with N processors, and discusses the iteratively B-convergence of the Newton iterative process, finally, the paper provides some numberical results which show that the parallel scheme is highly efficient as N is not too large.展开更多
We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross...We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross section of spherical Earth, and corresponding wave equations are defined in 2-D cylindrical coordinates. Spatial derivatives in the wave equations are approximated with efficient and high accuracy PSM in the lateral and high-order FDM in the radial direction on staggered grids. This algorithm allows us to divide the whole-Earth into sub-domains in radial direction and implement efficient parallel computing on PC cluster, while retains high accuracy and efficiency of PSM in lateral direction. A transformation of moment tensor between 3-D spherical Earth and our 2-D model was proposed to give corre- sponding moment tensor components used in 2-D modeling. Comparison of modeling results with those obtained by direct solution method shows very good accuracy of our algorithm. We also demonstrate its feasibility with a lateral heterogeneous whole-Earth model with localized velocity perturbation.展开更多
By performing one-dimensional (l-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfv^n waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages....By performing one-dimensional (l-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfv^n waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages. In the first stage, the density modes are excited and immediately couple with the pump Alfv6n waves. In the second stage, each pump Alfv^n wave decays into a density mode and a daughter Alfv6n mode similar to the monochromatic cases. Ftlrthermore, the proton velocity beam will also be formed after the saturation of the parametric instabilities. When the plasma beta is high, the parametric decay in the second stage will be strongly suppressed.展开更多
In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of ...In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of our approach is to invoke parallel hybrid storage system’s parallelism and prefetch data among multiple storage levels (e.g. solid state disks, and hard disk drives) in parallel with the application’s on-demand I/O reading requests. In this study, we show that a predictive prefetching across multiple storage levels is an efficient technique for placing near future needed data blocks in the uppermost levels near the application. Our PPHSS approach extends previous ideas of predictive prefetching in two ways: (1) our approach reduces applications’ execution elapsed time by keeping data blocks that are predicted to be accessed in the near future cached in the uppermost level;(2) we propose a parallel data fetching scheme in which multiple fetching mechanisms (i.e. predictive prefetching and application’s on-demand data requests) can work in parallel;where the first one fetches data blocks among the different levels of the hybrid storage systems (i.e. low-level (slow) to high-level (fast) storage devices) and the other one fetches the data from the storage system to the application. Our PPHSS strategy integrated with the predictive prefetching mechanism significantly reduces overall I/O access time in a hybrid storage system. Finally, we developed a simulator to evaluate the performance of the proposed predictive prefetching scheme in the context of hybrid storage systems. Our results show that our PPHSS can improve system performance by 4% across real-world I/O traces without the need of using large size caches.展开更多
This paper presents a novel one-axis linear-drive control system, in which wire rope is wound orderly around drum by servo motor drive and drays the working slider for a long linear reciprocating motion. PKM with this...This paper presents a novel one-axis linear-drive control system, in which wire rope is wound orderly around drum by servo motor drive and drays the working slider for a long linear reciprocating motion. PKM with this control system is metamorphic and can achieve great feed forces, accelerations and transverse speeds, high accuracy and low cost. The metamorphic characteristics are studied, including the metamorphic condition, con- tents, process as well as procedures. The kinematics computation model is established and analyzed.展开更多
Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with...Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with actuation redundancy in parallel mechanism. Branched chains with actuation redundancy are synthesized for eliminating interior singularity of 3-translational and 1-rotational(3T1R) parallel mechanisms. Guided by the discriminance method of hybrid screw group according to Grassmann line geometry, all the possibilities are listed for the occurrence of interior singularities in 3T1R parallel mechanism. Based on the linear relevance of screw system and the principles of eliminating parallel mechanism singularity with actuation redundancy, different types of branched chains with actuation redundancy are synthesized systematically to indicate the layout and the number of the branched chainsinterior with actuation redundancy. A general method is proposed for the configuration synthesis of the branched chains with actuation redundancy of the redundant parallel mechanism, and it builds a solid foundation for the subsequent performance optimization of the redundant actuation parallel mechanism.展开更多
Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially ...Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms.展开更多
基金support by the China Postdoctoral Science Foundation(2017M621151)Northeastern University Postdoctoral Science Foundation(20180313)+1 种基金the Fundamental Research Funds for Central Universities(N180104020)NSFCShandong Joint Fund of the National Natural Science Foundation of China(U1806208)
文摘The density inversion of gravity gradiometry data has attracted considerable attention;however,in large datasets,the multiplicity and low depth resolution as well as efficiency are constrained by time and computer memory requirements.To solve these problems,we improve the reweighting focusing inversion and probability tomography inversion with joint multiple tensors and prior information constraints,and assess the inversion results,computing efficiency,and dataset size.A Message Passing Interface(MPI)-Open Multi-Processing(OpenMP)-Computed Unified Device Architecture(CUDA)multilevel hybrid parallel inversion,named Hybrinv for short,is proposed.Using model and real data from the Vinton Dome,we confirm that Hybrinv can be used to compute the density distribution.For data size of 100×100×20,the hybrid parallel algorithm is fast and based on the run time and scalability we infer that it can be used to process the large-scale data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674139,11834005,and 11904145)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35).
文摘We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on the two most time-consuming sections in the finite DMRG sweeps,i.e.,the diagonalization of superblock and the truncation of subblock,we optimize our previous hybrid algorithm to achieve better performance.For the former,we adopt OpenMP application programming interface on CPU and use our own subroutines with higher bandwidth on GPU.For the later,we use GPU to accelerate matrix and vector operations involving the reduced density matrix.Applying the parallel scheme to the Hubbard model with next-nearest hopping on the 4-leg ladder,we compute the ground state of the system and obtain the charge stripe pattern which is usually observed in high temperature superconductors.Based on simulations with different numbers of DMRG kept states,we show significant performance improvement and computational time reduction with the optimized parallel algorithm.Our hybrid parallel strategy with superiority in solving the ground state of quasi-two dimensional lattices is also expected to be useful for other DMRG applications with large numbers of kept states,e.g.,the time dependent DMRG algorithms.
基金supported by the National Key Research and Development Program of China (No.2016YFB0200701)the National Natural Science Foundation of China (Nos. 11532016 and 91530325)
文摘An efficient MPI/OpenMP hybrid parallel Radial Basis Function (RBF) strategy for both continuous and discontinuous large-scale mesh deformation is proposed to reduce the computational cost and memory consumption.Unlike the conventional parallel methods in which all processors use the same surface displacement and implement the same operation,the present method employs different surface points sets and influence radius for each volume point movement,accompanied with efficient geometry searching strategy.The deformed surface points,also called Control Points (CPs),are stored in each processor.The displacement of spatial points is interpolated by using only 20-50 nearest control points,and the local influence radius is set to 5-20 times the maximum displacement of control points.To shorten the searching time for the nearest control point clouds,an Alternating Digital Tree (ADT) algorithm for 3D complex geometry is designed based on an iterative bisection technique.Besides,an MPI/OpenMP hybrid parallel approach is developed to reduce the memory cost in each High-Performance Computing (HPC) node for large-scale applications.Three 3D cases,including the ONERA-M6 wing and a commercial transport airplane standard model with up to 2.5 billion hybrid elements,are used to test the present mesh deformation method.The robustness and high parallel efficiency are demonstrated by a wing deflection case with a maximum bending angle of 450 and more than 80% parallel efficiency with 1024 MPI processors.In addition,the availability for both continuous and discontinuous surface deformation is verified by interpolating the projecting displacement with opposite directions surface points to the spatial points.
基金supported by the National Natural Science Foundation of China (Grant No.11772192).
文摘Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneousmulticore clusters.To solve it,a hybrid hierarchical parallel algorithm(HHPA)is proposed on the basis of the conventional domain decomposition algorithm(CDDA)and the parallel sparse solver.In this new algorithm,a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes,heterogeneous-core-groups(HCGs)and inside-heterogeneous-core-groups through mapping computing tasks to various hardware layers.This approach can not only achieve load balancing at different layers efficiently but can also improve the communication rate significantly through hierarchical communication.Additionally,the proposed hybrid parallel approach in this article can reduce the interface equation size and further reduce the solution time,which can make up for the shortcoming of growing communication overheads with the increase of interface equation size when employing CDDA.Moreover,the distributed sparse storage of a large amount of data is introduced to improve memory access.By solving benchmark instances on the Shenwei-Taihuzhiguang supercomputer,the results show that the proposed method can obtain higher speedup and parallel efficiency compared with CDDA and more superior extensibility of parallel partition compared with the two-level parallel computing algorithm(TPCA).
文摘Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level.
基金Shanghai Municipal Science and Technology Commission, China (No. 033012017).
文摘A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金supported by the National Natural Science Foundation of China(Grants 41374046 and41174034)
文摘We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations.Surface multiples dominate wavefields for shallow event.Core–mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2012AA110903)Jilin Key Scientific and Technological Project(20170204085GX)
文摘In this paper,a drive control strategy is developed based on the characteristics of series-parallel plug-in hybrid system.Energy management strategies in various modes are established with the basis on the minimum brake specific fuel consumption(BSFC)curve of engine.The control strategy,which is based on rules and system efficiency,is adopted to determine the entry/exit mechanisms of various modes according to battery state of charge(SOC),required power and required speed.The vehicle test results verify that the proposed control strategy can improve vehicle economy efficiently and makes a good effect on engine control.
基金the National Natural Science Foundation of China(No.60273048).
文摘Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.
文摘Based on the efficient hybrid methods for solving initial value problems of stiff ODEs, this paper derives a parallel scheme that can be used to solve the problems on parallel computers with N processors, and discusses the iteratively B-convergence of the Newton iterative process, finally, the paper provides some numberical results which show that the parallel scheme is highly efficient as N is not too large.
基金supported by the National Natural Science Foundation of China (Granted Nos.41174034 and 40874020)
文摘We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross section of spherical Earth, and corresponding wave equations are defined in 2-D cylindrical coordinates. Spatial derivatives in the wave equations are approximated with efficient and high accuracy PSM in the lateral and high-order FDM in the radial direction on staggered grids. This algorithm allows us to divide the whole-Earth into sub-domains in radial direction and implement efficient parallel computing on PC cluster, while retains high accuracy and efficiency of PSM in lateral direction. A transformation of moment tensor between 3-D spherical Earth and our 2-D model was proposed to give corre- sponding moment tensor components used in 2-D modeling. Comparison of modeling results with those obtained by direct solution method shows very good accuracy of our algorithm. We also demonstrate its feasibility with a lateral heterogeneous whole-Earth model with localized velocity perturbation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41331067,41474125,41274144,41174124 and 41121003the National Basic Research Program of China under Grant Nos 2013CBA01503 and 2012CB825602the Key Research Program of Chinese Academy of Sciences under Grant No KZZD-EW-01-4
文摘By performing one-dimensional (l-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfv^n waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages. In the first stage, the density modes are excited and immediately couple with the pump Alfv6n waves. In the second stage, each pump Alfv^n wave decays into a density mode and a daughter Alfv6n mode similar to the monochromatic cases. Ftlrthermore, the proton velocity beam will also be formed after the saturation of the parametric instabilities. When the plasma beta is high, the parametric decay in the second stage will be strongly suppressed.
文摘In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of our approach is to invoke parallel hybrid storage system’s parallelism and prefetch data among multiple storage levels (e.g. solid state disks, and hard disk drives) in parallel with the application’s on-demand I/O reading requests. In this study, we show that a predictive prefetching across multiple storage levels is an efficient technique for placing near future needed data blocks in the uppermost levels near the application. Our PPHSS approach extends previous ideas of predictive prefetching in two ways: (1) our approach reduces applications’ execution elapsed time by keeping data blocks that are predicted to be accessed in the near future cached in the uppermost level;(2) we propose a parallel data fetching scheme in which multiple fetching mechanisms (i.e. predictive prefetching and application’s on-demand data requests) can work in parallel;where the first one fetches data blocks among the different levels of the hybrid storage systems (i.e. low-level (slow) to high-level (fast) storage devices) and the other one fetches the data from the storage system to the application. Our PPHSS strategy integrated with the predictive prefetching mechanism significantly reduces overall I/O access time in a hybrid storage system. Finally, we developed a simulator to evaluate the performance of the proposed predictive prefetching scheme in the context of hybrid storage systems. Our results show that our PPHSS can improve system performance by 4% across real-world I/O traces without the need of using large size caches.
文摘This paper presents a novel one-axis linear-drive control system, in which wire rope is wound orderly around drum by servo motor drive and drays the working slider for a long linear reciprocating motion. PKM with this control system is metamorphic and can achieve great feed forces, accelerations and transverse speeds, high accuracy and low cost. The metamorphic characteristics are studied, including the metamorphic condition, con- tents, process as well as procedures. The kinematics computation model is established and analyzed.
基金Supported by Research Fund for the Doctoral Program of Higher Education,China(Grant No.20131333110008)
文摘Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with actuation redundancy in parallel mechanism. Branched chains with actuation redundancy are synthesized for eliminating interior singularity of 3-translational and 1-rotational(3T1R) parallel mechanisms. Guided by the discriminance method of hybrid screw group according to Grassmann line geometry, all the possibilities are listed for the occurrence of interior singularities in 3T1R parallel mechanism. Based on the linear relevance of screw system and the principles of eliminating parallel mechanism singularity with actuation redundancy, different types of branched chains with actuation redundancy are synthesized systematically to indicate the layout and the number of the branched chainsinterior with actuation redundancy. A general method is proposed for the configuration synthesis of the branched chains with actuation redundancy of the redundant parallel mechanism, and it builds a solid foundation for the subsequent performance optimization of the redundant actuation parallel mechanism.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175029,51475035)
文摘Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms.