With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstr...With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study o?ers a simple but effective approach to fabricate hybrid morphological features in micro-scale.With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study offers a simple but effective approach to fabricate hybrid morphological features in micro-scale.展开更多
A model is proposed to predict and evaluate the heat transfer characteristics of dropwise-filmwise hybrid surface.This is approached by modifying the original drop-size distribution,which is defined for fully dropwise...A model is proposed to predict and evaluate the heat transfer characteristics of dropwise-filmwise hybrid surface.This is approached by modifying the original drop-size distribution,which is defined for fully dropwise condensation(DWC)and making it applicable for dropwise-filmwise condensation(DFC).The modification is achieved by simulation work to determine two parameters:the area fraction occupied by large drops f and the ratio of the maximum radius of newly formed drops to that of larger drops γ.Simulation results show a good agreement with the literature for fully DWC and provide a correlation for each parameter with respect to DWC region width in the DFC hybrid surface.The present model evaluates the heat transfer performance of DFC by utilizing these correlations.A comparison is made between the proposed model with experimental work from the literature and results show a good agreement.While changing filmwise condensation(FWC)region width significantly affects the overall heat transfer performance,utilizing smaller width to that of DWC region has the advantage over fully DWC.Furthermore,surface renewal within the hydrophobic region is controlled by adjusting the DWC region width.When the ratio of drop maximum diameter to DWC region width is unity,surface renewal is achieved by drops merging to adjacent FWC regions only.When the ratio is less than unity,surface renewal is achieved by sweeping of departing drops within the hydrophobic region and by merging.For each case,an optimum DWC region width which corresponds to the maximum DFC heat flux is defined.展开更多
Surface hybrid inorganic semiconductors photocatalysts withπconjugated structure have recently been widely used in the field of photocatalytic environmental remediation and energy conversion.Surface hybridization is ...Surface hybrid inorganic semiconductors photocatalysts withπconjugated structure have recently been widely used in the field of photocatalytic environmental remediation and energy conversion.Surface hybridization is considered to be an efficient way to significantly enhance the photocatalytic activity by several times,completely inhibit photocorrosion of inorganic photocatalysts and expand the spectral response range of photocatalysts.This review provides a comprehensive overview of the surface hybridization definition,the principle of enhancing photocatalytic performance and the control factors of surface hybridization to promote photoactivity.Summarize the preparation and structural identification method of the surface hybrid photocatalyst.Special emphasis is placed on the various photocatalytic system construction of surface hybridization.The development of surface hybrid photocatalysts for pollutant degradation and energy conversion are further presented.Finally,the challenges and future development prospects of surface hybridization in photocatalysis are discussed.We hope this critical review can provide a clear picture of the state-of-the-art achievements and facilitate the applications of surface hybrid photocatalysts in environmental remediation and energy conversion.展开更多
Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink...Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.展开更多
The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, ...The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, the FSP was carried out with tool rotational speed of 1600 r/min, tool travel speed of 25 mm/min and tool tilt angle of 3° through only a “single pass”. The optical and scanning electron microscopies, microhardness and reciprocating wear tests were used to characterize the samples. The results showed that the addition of MoS2 lubricant particles to A413/SiCp surface composite leads to the decrease of friction coefficient and mass loss. In fact, the generation of mechanically mixed layer (MML) containing MoS2 lubricant particles in A413/SiCp/MoS2p surface hybrid composite results in the reduction of metal-to-metal contact and subsequently leads to the improvement of tribological behavior.展开更多
The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is th...The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is the modified KdV (Korteweg-de Vries) equation. A peculiarity of the obtained solutions is that they form packages constituted by combinations of waves belonging to the two main families of well-known bright and dark solitary waves. This putting together creates competitions between the different components of the considered packages which, following the values assigned to the parameters of the considered system and in relation to those of the wave parameters, generate hybrid or multi-form structures. The direct method of resolution which made possible the obtained results is that of Bogning-Djeumen Tchaho-Kofane extended to the new implicit Bogning functions. The existence conditions of some solutions are obtained. The numerical simulations carried out with a view to testing the observable and applicable characters of the obtained solutions revealed their stabilities over a relatively long time, and at the same time, confirmed the recommended theoretical forecasts. We are convinced that the solutions proposed as part of this work will make it possible to detect, understand and explain some physical phenomena linked to fluid molecular interactions, former or new, which constantly occur on the fluid surfaces, mainly at the shallow water surface.展开更多
The propagation length of surface plasmon polaritons(SPPs) is intrinsically limited by the metallic ohmic loss that is enhanced by the strongly confined electromagnetic field. In this paper, we propose a new class o...The propagation length of surface plasmon polaritons(SPPs) is intrinsically limited by the metallic ohmic loss that is enhanced by the strongly confined electromagnetic field. In this paper, we propose a new class of hybrid plasmonic waveguides(HPWs) that can support long-range SPP propagation while keeping subwavelength optical field confinement. It is shown that the coupling between the waveguides can be well tuned by simply varying the structural parameters. Compared with conventional HPWs, a larger propagation length as well as a better optical field confinement can be simultaneously realized. The proposed structure with better optical performance can be useful for future photonic device design and optical integration research.展开更多
To address the capacity degradation,voltage fading,structural instability and adverse interface reactions in cathode materi-als of lithium-ion batteries(LIBs),numerous modification strategies have been developed,mainl...To address the capacity degradation,voltage fading,structural instability and adverse interface reactions in cathode materi-als of lithium-ion batteries(LIBs),numerous modification strategies have been developed,mainly including coating and doping.In particular,the important strategy of doping(surface doping and bulk doping)has been considered an effective strategy to modulate the crystal lattice structure of cathode materials.However,special insights into the mechanisms and effectiveness of the doping strategy,especially comparisons between surface doping and bulk doping in cathode materials,are still lacking.In this review,recent significant progress in surface doping and bulk doping strategies is demonstrated in detail by focusing on their inherent differences as well as effects on the structural stability,lithium-ion(Li-ion)diffusion and electrochemical properties of cathode materials from the following mechanistic insights:preventing the exposure of reactive Ni on the surface,stabilizing the Li slabs,mitigating the migration of transition metal(TM)ions,alleviating unde-sired structural transformations and adverse interface issues,enlarging the Li interslab spacing,forming three-dimensional(3D)Li-ion diffusion channels,and providing more active sites for the charge-transfer process.Moreover,insights into the correlation between the mechanisms of hybrid surface engineering strategies(doping and coating)and their influences on the electrochemical performance of cathode materials are provided by emphasizing the stabilization of the Li slabs,the enhancement of the surface chemical stability,and the alleviation of TM ion migration.Furthermore,the existing challenges and future perspectives in this promising field are indicated.展开更多
Core-shell nanoparticles(CSNPs)are widely used in energy harvesting,conversion,and thermal management due to the excellent physical properties of different components.Because of the synergistic interaction between the...Core-shell nanoparticles(CSNPs)are widely used in energy harvesting,conversion,and thermal management due to the excellent physical properties of different components.Because of the synergistic interaction between the core and the shell,the thermal radiative properties are expected to be further enhanced.In this work,we achieve near-field radiative heat transfer(NFRHT)enhancement between SiC@Drude CSNPs.Numerical results show that the total heat flux between NPs is 1.47 times and 9.98 times higher than homogeneous SiC and Drude NPs at the same radius when the core volume fraction is 0.76.Surface modes hybridization arising from the interfaces of the shell-core and shell-air contributes to the improved thermal radiation.The effect of shift frequency on the NFRHT between SiC@Drude CSNPs is studied,showing that the enhancement ratio of NFRHT between CSNPs can reach 4.34 at a shift frequency of 1×10^(14) rad/s,which is 38.34 times higher than the previous work.This study demonstrates that surface modes hybridization in CSNPs can significantly improve NFRHT and open a novel path for high-efficiency energy transport at the nanoscale.展开更多
基金The financial supports from NSF(CMMI-1405355)and ACS Petroleum Research Fund(53780-DNI7)are gratefully acknowledged.
文摘With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study o?ers a simple but effective approach to fabricate hybrid morphological features in micro-scale.With appropriate stimuli,such as heat,humidity,or magnetic field,shape memory polymers(SMPs)can recover to their original shapes from temporary,programmed states.Using thermal responsive SMPs as substrates,we demonstrate a simple method to realize hybrid surface morphologies through confined thin film wrinkling in localized areas.The bilayer system was fabricated by depositing a layer of aluminum thin?lm on top of a SMP substrate programmed with a tensile strain.After the system was heated by a heating wire,hybrid wrinkling patterns were formed in a confined circular area around the heat source,with an inner spoke pattern and an outer ring pattern.Wrinkling patterns showed good symmetry,and the size of the wrinkling area can be tuned by controlling the heat input.This study offers a simple but effective approach to fabricate hybrid morphological features in micro-scale.
文摘A model is proposed to predict and evaluate the heat transfer characteristics of dropwise-filmwise hybrid surface.This is approached by modifying the original drop-size distribution,which is defined for fully dropwise condensation(DWC)and making it applicable for dropwise-filmwise condensation(DFC).The modification is achieved by simulation work to determine two parameters:the area fraction occupied by large drops f and the ratio of the maximum radius of newly formed drops to that of larger drops γ.Simulation results show a good agreement with the literature for fully DWC and provide a correlation for each parameter with respect to DWC region width in the DFC hybrid surface.The present model evaluates the heat transfer performance of DFC by utilizing these correlations.A comparison is made between the proposed model with experimental work from the literature and results show a good agreement.While changing filmwise condensation(FWC)region width significantly affects the overall heat transfer performance,utilizing smaller width to that of DWC region has the advantage over fully DWC.Furthermore,surface renewal within the hydrophobic region is controlled by adjusting the DWC region width.When the ratio of drop maximum diameter to DWC region width is unity,surface renewal is achieved by drops merging to adjacent FWC regions only.When the ratio is less than unity,surface renewal is achieved by sweeping of departing drops within the hydrophobic region and by merging.For each case,an optimum DWC region width which corresponds to the maximum DFC heat flux is defined.
基金This study was partly supported by the National Natural Science Foundation of China(No.21872077,21673126,21761142017,21621003)Collaborative Innovation Centre for Regional Environmental Quality。
文摘Surface hybrid inorganic semiconductors photocatalysts withπconjugated structure have recently been widely used in the field of photocatalytic environmental remediation and energy conversion.Surface hybridization is considered to be an efficient way to significantly enhance the photocatalytic activity by several times,completely inhibit photocorrosion of inorganic photocatalysts and expand the spectral response range of photocatalysts.This review provides a comprehensive overview of the surface hybridization definition,the principle of enhancing photocatalytic performance and the control factors of surface hybridization to promote photoactivity.Summarize the preparation and structural identification method of the surface hybrid photocatalyst.Special emphasis is placed on the various photocatalytic system construction of surface hybridization.The development of surface hybrid photocatalysts for pollutant degradation and energy conversion are further presented.Finally,the challenges and future development prospects of surface hybridization in photocatalysis are discussed.We hope this critical review can provide a clear picture of the state-of-the-art achievements and facilitate the applications of surface hybrid photocatalysts in environmental remediation and energy conversion.
文摘Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.
文摘The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, the FSP was carried out with tool rotational speed of 1600 r/min, tool travel speed of 25 mm/min and tool tilt angle of 3° through only a “single pass”. The optical and scanning electron microscopies, microhardness and reciprocating wear tests were used to characterize the samples. The results showed that the addition of MoS2 lubricant particles to A413/SiCp surface composite leads to the decrease of friction coefficient and mass loss. In fact, the generation of mechanically mixed layer (MML) containing MoS2 lubricant particles in A413/SiCp/MoS2p surface hybrid composite results in the reduction of metal-to-metal contact and subsequently leads to the improvement of tribological behavior.
文摘The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is the modified KdV (Korteweg-de Vries) equation. A peculiarity of the obtained solutions is that they form packages constituted by combinations of waves belonging to the two main families of well-known bright and dark solitary waves. This putting together creates competitions between the different components of the considered packages which, following the values assigned to the parameters of the considered system and in relation to those of the wave parameters, generate hybrid or multi-form structures. The direct method of resolution which made possible the obtained results is that of Bogning-Djeumen Tchaho-Kofane extended to the new implicit Bogning functions. The existence conditions of some solutions are obtained. The numerical simulations carried out with a view to testing the observable and applicable characters of the obtained solutions revealed their stabilities over a relatively long time, and at the same time, confirmed the recommended theoretical forecasts. We are convinced that the solutions proposed as part of this work will make it possible to detect, understand and explain some physical phenomena linked to fluid molecular interactions, former or new, which constantly occur on the fluid surfaces, mainly at the shallow water surface.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647021)the Fundamental Research Funds for the Central Universities of China(Grant No.ZY1531)
文摘The propagation length of surface plasmon polaritons(SPPs) is intrinsically limited by the metallic ohmic loss that is enhanced by the strongly confined electromagnetic field. In this paper, we propose a new class of hybrid plasmonic waveguides(HPWs) that can support long-range SPP propagation while keeping subwavelength optical field confinement. It is shown that the coupling between the waveguides can be well tuned by simply varying the structural parameters. Compared with conventional HPWs, a larger propagation length as well as a better optical field confinement can be simultaneously realized. The proposed structure with better optical performance can be useful for future photonic device design and optical integration research.
基金the National Natural Science Foundation of China(52072298 and 51802261)the Local Special Service Program Funded by Education Department of Shaanxi Provincial Government(19JC031)+2 种基金the Natural Science Foundation of Shaanxi(2020JC-41,2021TD-15)the Xi’an Science and Technology Project of China(2019219714SYS012CG034)the Project 2019JLP-04 supported by the Joint Foundation of Shaanxi.
文摘To address the capacity degradation,voltage fading,structural instability and adverse interface reactions in cathode materi-als of lithium-ion batteries(LIBs),numerous modification strategies have been developed,mainly including coating and doping.In particular,the important strategy of doping(surface doping and bulk doping)has been considered an effective strategy to modulate the crystal lattice structure of cathode materials.However,special insights into the mechanisms and effectiveness of the doping strategy,especially comparisons between surface doping and bulk doping in cathode materials,are still lacking.In this review,recent significant progress in surface doping and bulk doping strategies is demonstrated in detail by focusing on their inherent differences as well as effects on the structural stability,lithium-ion(Li-ion)diffusion and electrochemical properties of cathode materials from the following mechanistic insights:preventing the exposure of reactive Ni on the surface,stabilizing the Li slabs,mitigating the migration of transition metal(TM)ions,alleviating unde-sired structural transformations and adverse interface issues,enlarging the Li interslab spacing,forming three-dimensional(3D)Li-ion diffusion channels,and providing more active sites for the charge-transfer process.Moreover,insights into the correlation between the mechanisms of hybrid surface engineering strategies(doping and coating)and their influences on the electrochemical performance of cathode materials are provided by emphasizing the stabilization of the Li slabs,the enhancement of the surface chemical stability,and the alleviation of TM ion migration.Furthermore,the existing challenges and future perspectives in this promising field are indicated.
基金supported by the National Natural Science Foundation of China(52106099,51976173)the Shandong Provincial Natural Science Foundation(ZR2022YQ57)+3 种基金the Taishan Scholars Program,the Jiangsu Provincial Natural Science Foundation(BK20201204)the Basic Research Program of Taicang(TC2019JC01)China Postdoctoral Science Foundation(2022M710122)the Fundamental Research Funds for the Central Universities(D5000210779).
文摘Core-shell nanoparticles(CSNPs)are widely used in energy harvesting,conversion,and thermal management due to the excellent physical properties of different components.Because of the synergistic interaction between the core and the shell,the thermal radiative properties are expected to be further enhanced.In this work,we achieve near-field radiative heat transfer(NFRHT)enhancement between SiC@Drude CSNPs.Numerical results show that the total heat flux between NPs is 1.47 times and 9.98 times higher than homogeneous SiC and Drude NPs at the same radius when the core volume fraction is 0.76.Surface modes hybridization arising from the interfaces of the shell-core and shell-air contributes to the improved thermal radiation.The effect of shift frequency on the NFRHT between SiC@Drude CSNPs is studied,showing that the enhancement ratio of NFRHT between CSNPs can reach 4.34 at a shift frequency of 1×10^(14) rad/s,which is 38.34 times higher than the previous work.This study demonstrates that surface modes hybridization in CSNPs can significantly improve NFRHT and open a novel path for high-efficiency energy transport at the nanoscale.