With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning...Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning algorithms based on Recurrent Neural Networks also have the problem of accumulating errors.Moreover,it is difficult to obtain higher accuracy by relying on a single historical radar echo observation.Therefore,in this study,we constructed the Fusion GRU module,which leverages a cascade structure to effectively combine radar echo data and mean wind data.We also designed the Top Connection so that the model can capture the global spatial relationship to construct constraints on the predictions.Based on the Jiangsu Province dataset,we compared some models.The results show that our proposed model,Cascade Fusion Spatiotemporal Network(CFSN),improved the critical success index(CSI)by 10.7%over the baseline at the threshold of 30 dBZ.Ablation experiments further validated the effectiveness of our model.Similarly,the CSI of the complete CFSN was 0.004 higher than the suboptimal solution without the cross-attention module at the threshold of 30 dBZ.展开更多
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult...Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods.展开更多
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti...There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm.展开更多
The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relative...The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.展开更多
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and...In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.展开更多
Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Throug...Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Through discussing the sequential approach, which is the classical asynchronous multisensor data fusion algorithm, a new algorithm based on distributed computation structure is proposed. The new algorithm can meet the requirement of real-time computation of netting fusion system, and is more practical for engineering compared with the classical sequential approach. Simulation results show the validity of the presented algorithm.展开更多
Radar quantitative precipitation estimation(QPE)is a key and challenging task for many designs and applications with meteorological purposes.Since the Z-R relation between radar and rain has a number of parameters on ...Radar quantitative precipitation estimation(QPE)is a key and challenging task for many designs and applications with meteorological purposes.Since the Z-R relation between radar and rain has a number of parameters on different areas,and the rainfall varies with seasons,the traditional methods are incapable of achieving high spatial and temporal resolution and thus difficult to obtain a refined rainfall estimation.This paper proposes a radar quantitative precipitation estimation algorithm based on the spatiotemporal network model(ST-QPE),which designs a convolutional time-series network QPE-Net8 and a multi-scale feature fusion time-series network QPE-Net22 to address these limitations.We report on our investigation into contrast reversal experiments with radar echo and rainfall data collected by the Hunan Meteorological Observatory.Experimental results are verified and analyzed by using statistical and meteorological methods,and show that the ST-QPE model can inverse the rainfall information corresponding to the radar echo at a given moment,which provides practical guidance for accurate short-range precipitation nowcasting to prevent and mitigate disasters efficiently.展开更多
Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous ...Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous derivative is constructed. The method is based on TNN model. In the learning process of TNN, the gradient descent method is adopted to solve the adaptive optimal thresholds of different scales and directions in Curvelet domain, and to achieve an optimal mean square error performance. In this paper, the specific implementation steps are presented, and the superiority of this method is verified by simulation. Finally, the proposed method is used to process the ice radar data obtained during the 28th Chinese National Antarctic Research Expedition in the region of Zhongshan Station, Antarctica. Experimental results show that the proposed method can reduce the noise effectively, while preserving the edge of the ice layers.展开更多
The presence of systematic measuring errors complicates track-to-track association, spatially separates the tracks that correspond to the same true target, and seriously decline the performances of traditional track-t...The presence of systematic measuring errors complicates track-to-track association, spatially separates the tracks that correspond to the same true target, and seriously decline the performances of traditional track-to-track association algorithms. Consequently, the influence of radar systematic errors on tracks from different radars, which is described as some rotation and translation, has been analyzed theoretically in this paper. In addition, a novel approach named alignment-correlation method is developed to estimate and reduce this effect, align and correlate tracks accurately without prior registration using phase correlation technique and statistic binary track correlation algorithm. Monte-Carlo simulation results illustrate that the proposed algorithm has good performance in solving the track-to-track association problem with systematic errors in radar network and could provide effective and reliable associated tracks for the next step of registration.展开更多
Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the im...Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.展开更多
In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based o...In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based on ground penetrating radar( GPR) data. Compared with the traditional TIN algorithm,the LCTIN algorithm introduced a layer constraint to the discrete data points during the 3 D modelling process,and it can dynamically construct networks from layer to layer and implement 3 D modelling for arbitrary shapes with high precision. The experimental results validated this method,the proposed algorithm not only can maintain the rationality of triangulation network,but also can obtain a good generation speed. In addition,the algorithm is also introduced to our self-developed 3 D visualization platform,which utilized GPR data to model geological diseases. Therefore the feasibility of the algorithm is verified in the practical application.展开更多
To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line ...To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.展开更多
Synthetic aperture radars(SARs)encounter the azimuth cutoff problem when observing sea waves.Consequently,SARs can only capture the waves with wavelengths larger than the cutoff wavelength and lose the information of ...Synthetic aperture radars(SARs)encounter the azimuth cutoff problem when observing sea waves.Consequently,SARs can only capture the waves with wavelengths larger than the cutoff wavelength and lose the information of waves with smaller wavelengths.To increase the accuracy of SAR wave observations,this paper investigates an azimuth cutoff compensation method based on the simulated multiview SAR wave synchronization data obtained by the collaborative observation via networked satellites.Based on the simulated data and the equivalent multiview measured data from Sentinel-1 virtual networking,the method is verified and the cutoff wavelengths decrease by 16.40%and 14.00%.The biases of the inversion significant wave height with true values decrease by 0.04 m and 0.14 m,and the biases of the mean wave period decrease by 0.17 s and 0.22 s,respectively.These results demonstrate the effectiveness of the azimuth cutoff compensation method.Based on the azimuth cutoff compensation method,the multisatellite SAR networking mode for wave observations are discussed.The highest compensation effect is obtained when the combination of azimuth angle is(95°,115°,135°),the orbital intersection angle is(50°,50°),and three or four satellites are used.The study of the multisatellite networking mode in this paper can provide valuable references for the compensation of azimuth cutoff and the observation of waves by a multisatellite network.展开更多
SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in remo...SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub.展开更多
In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to dei...In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness.展开更多
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
基金National Natural Science Foundation of China(42375145)The Open Grants of China Meteorological Admin-istration Radar Meteorology Key Laboratory(2023LRM-A02)。
文摘Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning algorithms based on Recurrent Neural Networks also have the problem of accumulating errors.Moreover,it is difficult to obtain higher accuracy by relying on a single historical radar echo observation.Therefore,in this study,we constructed the Fusion GRU module,which leverages a cascade structure to effectively combine radar echo data and mean wind data.We also designed the Top Connection so that the model can capture the global spatial relationship to construct constraints on the predictions.Based on the Jiangsu Province dataset,we compared some models.The results show that our proposed model,Cascade Fusion Spatiotemporal Network(CFSN),improved the critical success index(CSI)by 10.7%over the baseline at the threshold of 30 dBZ.Ablation experiments further validated the effectiveness of our model.Similarly,the CSI of the complete CFSN was 0.004 higher than the suboptimal solution without the cross-attention module at the threshold of 30 dBZ.
基金supported by National Key R&D Program of China(Grant No.2022YFC3003903)the S&T Program of Hebei(Grant No.19275408D),the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B1111200001)+1 种基金the Key Project of Monitoring,Early Warning and Prevention of Major Natural Disasters of China(Grant No.2019YFC1510304)the Joint Fund of Key Laboratory of Atmosphere Sounding,CMA,and the Research Centre on Meteorological Observation Engineering Technology,CMA(Grant No.U2021Z05).
文摘Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods.
基金supported by the Municipal Gavemment of Quzhou(2022D0009,2022D013,2022D033)the Science and Technology Project of Sichuan Province(2023YFG0176)。
文摘There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm.
基金supported by funding from the Natural Science Foundation of Jiangsu Province (Grant No. BK20171457)the 2013 Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201306078)+1 种基金the National Natural Science Foundation of China (Grant No. 41301399)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.
基金The authors would like to acknowledge National Natural Science Foundation of China under Grant 61973037 and Grant 61673066 to provide fund for conducting experiments.
文摘In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.
文摘Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Through discussing the sequential approach, which is the classical asynchronous multisensor data fusion algorithm, a new algorithm based on distributed computation structure is proposed. The new algorithm can meet the requirement of real-time computation of netting fusion system, and is more practical for engineering compared with the classical sequential approach. Simulation results show the validity of the presented algorithm.
基金This work is supported by the Key Research and Development Program of Hunan Province(No.2019SK2161)the Key Research and Development Program of Hunan Province(No.2016SK2017).
文摘Radar quantitative precipitation estimation(QPE)is a key and challenging task for many designs and applications with meteorological purposes.Since the Z-R relation between radar and rain has a number of parameters on different areas,and the rainfall varies with seasons,the traditional methods are incapable of achieving high spatial and temporal resolution and thus difficult to obtain a refined rainfall estimation.This paper proposes a radar quantitative precipitation estimation algorithm based on the spatiotemporal network model(ST-QPE),which designs a convolutional time-series network QPE-Net8 and a multi-scale feature fusion time-series network QPE-Net22 to address these limitations.We report on our investigation into contrast reversal experiments with radar echo and rainfall data collected by the Hunan Meteorological Observatory.Experimental results are verified and analyzed by using statistical and meteorological methods,and show that the ST-QPE model can inverse the rainfall information corresponding to the radar echo at a given moment,which provides practical guidance for accurate short-range precipitation nowcasting to prevent and mitigate disasters efficiently.
基金Supported by the National High Technology Research and Development Program of China (No. 2011AA040202)the National Natural Science Foundation of China (No. 40976114)
文摘Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous derivative is constructed. The method is based on TNN model. In the learning process of TNN, the gradient descent method is adopted to solve the adaptive optimal thresholds of different scales and directions in Curvelet domain, and to achieve an optimal mean square error performance. In this paper, the specific implementation steps are presented, and the superiority of this method is verified by simulation. Finally, the proposed method is used to process the ice radar data obtained during the 28th Chinese National Antarctic Research Expedition in the region of Zhongshan Station, Antarctica. Experimental results show that the proposed method can reduce the noise effectively, while preserving the edge of the ice layers.
文摘The presence of systematic measuring errors complicates track-to-track association, spatially separates the tracks that correspond to the same true target, and seriously decline the performances of traditional track-to-track association algorithms. Consequently, the influence of radar systematic errors on tracks from different radars, which is described as some rotation and translation, has been analyzed theoretically in this paper. In addition, a novel approach named alignment-correlation method is developed to estimate and reduce this effect, align and correlate tracks accurately without prior registration using phase correlation technique and statistic binary track correlation algorithm. Monte-Carlo simulation results illustrate that the proposed algorithm has good performance in solving the track-to-track association problem with systematic errors in radar network and could provide effective and reliable associated tracks for the next step of registration.
文摘Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.
基金Supported by the National Science Foundation of China(61302157)the National High Technology Research and Development Program of China(863 Program)(2012AA12A308)the Yue Qi Young Scholars Project of China University of Mining&Technology(Beijing)(800015Z1117)
文摘In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based on ground penetrating radar( GPR) data. Compared with the traditional TIN algorithm,the LCTIN algorithm introduced a layer constraint to the discrete data points during the 3 D modelling process,and it can dynamically construct networks from layer to layer and implement 3 D modelling for arbitrary shapes with high precision. The experimental results validated this method,the proposed algorithm not only can maintain the rationality of triangulation network,but also can obtain a good generation speed. In addition,the algorithm is also introduced to our self-developed 3 D visualization platform,which utilized GPR data to model geological diseases. Therefore the feasibility of the algorithm is verified in the practical application.
基金supported by the National Natural Science Foundation of China (61971470)。
文摘To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.
基金the support of the National Natural Science Foundation of China(No.61931025)the National Key R&D Program of China(No.2017YFC1405600)。
文摘Synthetic aperture radars(SARs)encounter the azimuth cutoff problem when observing sea waves.Consequently,SARs can only capture the waves with wavelengths larger than the cutoff wavelength and lose the information of waves with smaller wavelengths.To increase the accuracy of SAR wave observations,this paper investigates an azimuth cutoff compensation method based on the simulated multiview SAR wave synchronization data obtained by the collaborative observation via networked satellites.Based on the simulated data and the equivalent multiview measured data from Sentinel-1 virtual networking,the method is verified and the cutoff wavelengths decrease by 16.40%and 14.00%.The biases of the inversion significant wave height with true values decrease by 0.04 m and 0.14 m,and the biases of the mean wave period decrease by 0.17 s and 0.22 s,respectively.These results demonstrate the effectiveness of the azimuth cutoff compensation method.Based on the azimuth cutoff compensation method,the multisatellite SAR networking mode for wave observations are discussed.The highest compensation effect is obtained when the combination of azimuth angle is(95°,115°,135°),the orbital intersection angle is(50°,50°),and three or four satellites are used.The study of the multisatellite networking mode in this paper can provide valuable references for the compensation of azimuth cutoff and the observation of waves by a multisatellite network.
文摘SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub.
基金the National Major Research&Development project of China(2018YFE0206500)the National Natural Science Foundation of China(62071140)+1 种基金the Program of China International Scientific and Technological Cooperation(2015DFR10220)the Technology Foundation for Basic Enhancement Plan(2021-JCJQ-JJ-0301).
文摘In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness.