ITER blanket design has progressed significantly since 2001, which resulted in a reduction in cost and an increase in performance with respect to FDR 2001. One of the most important improvements is the new coolant flo...ITER blanket design has progressed significantly since 2001, which resulted in a reduction in cost and an increase in performance with respect to FDR 2001. One of the most important improvements is the new coolant flow configuration in the shield block ( SB ) . In the current design TM, the cooling circuit in the SB is a matrix of radial holes which are arranged in eight poloidal rows. The rows are fed in parallel by front headers and back drilled collectors, and merge in four couples through the front header. These four couples of rows are linked in series by transverse holes. In the current design, a special shape of flow driver is mounted inside the radial hole, and coolant flows through clearance between the driver and drilled radial hole, which allows achieving a high coolant velocity,展开更多
In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released...In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket.展开更多
Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers ha...Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers have mainly focused on their biochemical properties (e.g. CH4 oxidation capacity). However, the utilization of peat as a cover material also requires a solid understanding of its geotechnical properties (thermal, hydraulic, and mechanical), which are critical to the performance of any biocover. Therefore, the objective of this context is to investigate and assess the geotechnical properties of peat-based cover materials (peat, peat–sand mixture), including compaction, consolidation, and hydraulic and thermal conductivities. The studied materials show high compressibility to the increase of vertical stress, with compression index (Cc) values ranging from 0.16 to 0.358. The compressibility is a function of sand content such that the peat–sand mixture (1:3) has the lowest Cc value. Both the thermal and hydraulic conductivities are functions of moisture content, dry density, and sand content. The hydraulic conductivity varies from 1.74 × 10^-9 m/s to 7.35 × 10^-9 m/s, and increases with the increase in sand content. The thermal conductivity of the studied samples varies between 0.54 W/(m K) and 1.41 W/(m K) and it increases with the increases in moisture and sand contents. Increases in sand content generally increase the mechanical behavior of peat-based covers; however, they also cause relatively high hydraulic and thermal conductivities which are not favored properties for biocovers.展开更多
The emergence of building condenser water systems with all-variable speed pumps and tower fans allows for increased efficiency and flexibility of chiller plants in partial load operation but also increases the control...The emergence of building condenser water systems with all-variable speed pumps and tower fans allows for increased efficiency and flexibility of chiller plants in partial load operation but also increases the control complexity of condenser water systems.This study aims to develop an integrated modeling technique for evaluating and optimizing the energy performance of such a condenser water system.The proposed system model is based on the semi-physical semi-empirical chiller,pump,and cooling tower models,with capabilities of fully considering the hydraulic and thermal interactions in the condenser water loop,being solved analytically and much faster than iterative solvers and supporting the explicit optimization of the pump and tower fan frequency.A mathematical approach,based on the system model and constrained optimization technique,is subsequently established to evaluate the energy performance of a typical dual setpoint-based variable speed strategy and find its energy-saving potential and most efficient operation by jointly optimizing pumps and tower fans.An all-variable speed chiller plant from Wuhan,China,is used for a case study to validate the system model’s accuracy and explore its applicability.The results showed that the system model can accurately simulate the condenser water system’s performance under various operating conditions.By optimizing the frequencies of pumps and tower fans,the total system energy consumption can be reduced by 12%–13%compared to the fixed dual setpoint-based strategy with range and approach setpoints of 4℃and 2℃.In contrast,the energy-saving potential of optimizing the cooling tower sequencing is insignificant.A simple joint speed control method for optimizing the pumps and tower fans emerged,i.e.,the optimal pump and fan frequency are linearly correlated(if both are non-extremes)and depend on the chiller part load ratio only,irrespective of the ambient wet-bulb temperature and chilled water supply temperature.It was also found that the oversizing issue has further limited the energy-saving space of the studied system and results in the range and approach setpoints being inaccessible.The study’s findings can serve as references to the operation optimization of all-variable speed condenser water systems in the future.展开更多
文摘ITER blanket design has progressed significantly since 2001, which resulted in a reduction in cost and an increase in performance with respect to FDR 2001. One of the most important improvements is the new coolant flow configuration in the shield block ( SB ) . In the current design TM, the cooling circuit in the SB is a matrix of radial holes which are arranged in eight poloidal rows. The rows are fed in parallel by front headers and back drilled collectors, and merge in four couples through the front header. These four couples of rows are linked in series by transverse holes. In the current design, a special shape of flow driver is mounted inside the radial hole, and coolant flows through clearance between the driver and drilled radial hole, which allows achieving a high coolant velocity,
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)。
文摘In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket.
文摘Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers have mainly focused on their biochemical properties (e.g. CH4 oxidation capacity). However, the utilization of peat as a cover material also requires a solid understanding of its geotechnical properties (thermal, hydraulic, and mechanical), which are critical to the performance of any biocover. Therefore, the objective of this context is to investigate and assess the geotechnical properties of peat-based cover materials (peat, peat–sand mixture), including compaction, consolidation, and hydraulic and thermal conductivities. The studied materials show high compressibility to the increase of vertical stress, with compression index (Cc) values ranging from 0.16 to 0.358. The compressibility is a function of sand content such that the peat–sand mixture (1:3) has the lowest Cc value. Both the thermal and hydraulic conductivities are functions of moisture content, dry density, and sand content. The hydraulic conductivity varies from 1.74 × 10^-9 m/s to 7.35 × 10^-9 m/s, and increases with the increase in sand content. The thermal conductivity of the studied samples varies between 0.54 W/(m K) and 1.41 W/(m K) and it increases with the increases in moisture and sand contents. Increases in sand content generally increase the mechanical behavior of peat-based covers; however, they also cause relatively high hydraulic and thermal conductivities which are not favored properties for biocovers.
基金supported by the State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation(No.ACSKL2019KT13)National Natural Science Foundation of China(No.51608297)+3 种基金Scientific Research Project of Beijing Municipal Education Commission(No.KM201910016009 and No.KZ202110016022)Beijing Advanced Innovation Center for Future Urban Design(No.UDC2019011121)Pyramid Talent Training Project(No.JDYC20220815)Post-Graduate Innovation Project(No.PG2024077)of Beijing University of Civil Engineering and Architecture.
文摘The emergence of building condenser water systems with all-variable speed pumps and tower fans allows for increased efficiency and flexibility of chiller plants in partial load operation but also increases the control complexity of condenser water systems.This study aims to develop an integrated modeling technique for evaluating and optimizing the energy performance of such a condenser water system.The proposed system model is based on the semi-physical semi-empirical chiller,pump,and cooling tower models,with capabilities of fully considering the hydraulic and thermal interactions in the condenser water loop,being solved analytically and much faster than iterative solvers and supporting the explicit optimization of the pump and tower fan frequency.A mathematical approach,based on the system model and constrained optimization technique,is subsequently established to evaluate the energy performance of a typical dual setpoint-based variable speed strategy and find its energy-saving potential and most efficient operation by jointly optimizing pumps and tower fans.An all-variable speed chiller plant from Wuhan,China,is used for a case study to validate the system model’s accuracy and explore its applicability.The results showed that the system model can accurately simulate the condenser water system’s performance under various operating conditions.By optimizing the frequencies of pumps and tower fans,the total system energy consumption can be reduced by 12%–13%compared to the fixed dual setpoint-based strategy with range and approach setpoints of 4℃and 2℃.In contrast,the energy-saving potential of optimizing the cooling tower sequencing is insignificant.A simple joint speed control method for optimizing the pumps and tower fans emerged,i.e.,the optimal pump and fan frequency are linearly correlated(if both are non-extremes)and depend on the chiller part load ratio only,irrespective of the ambient wet-bulb temperature and chilled water supply temperature.It was also found that the oversizing issue has further limited the energy-saving space of the studied system and results in the range and approach setpoints being inaccessible.The study’s findings can serve as references to the operation optimization of all-variable speed condenser water systems in the future.