Trends in modern industry show a tendency towards demassovization of production as a response to the customers' specific needs for unique and personalized products. This provokes significant changes in the processes ...Trends in modern industry show a tendency towards demassovization of production as a response to the customers' specific needs for unique and personalized products. This provokes significant changes in the processes of manufacturing, assembly, and testing The cost of such a type of production can be reduced by employing highly productive reconfigurable equipment with proper software to enable optimization. This paper presents a decision support extension for directing of hydraulic cylinders to assembly-testing lines using fuzzy logic in the Enterprise Resource Planning system of a small size production in a factory in Bulgaria. Different assembly-testing lines are flexibly assigned to the specific cylinder's parameters by the developed fuzzy system on the basis of the overlapping of parameters in the hydraulic cylinders classification. The final decision on the line assigned in case of alternatives is made through accounting for the minimal cylinder delay time. The effectiveness of the approach is assessed by simulation. It leads to an increase of the efficiency of the assembly-testing flow lines, a reduction of the time needed for hydraulic cylinders assembling and testing and balanced loading of the modules.展开更多
An inside-cushion structure with sidestep and taper-shaped plungers is studied to address the problems of high impact and vibration in high-speed hydraulic cylinders.First,the three stages of cushion processes are dis...An inside-cushion structure with sidestep and taper-shaped plungers is studied to address the problems of high impact and vibration in high-speed hydraulic cylinders.First,the three stages of cushion processes are discussed according to the varying flow area as the piston moves.Then,to establish a precise mathematical model,the states of the flow field are estimated in terms of the Reynolds number.Accordingly,the simulation model parameterized against measured data is developed and verified by experiment.Last,the average velocity,peak cushion pressure,and terminal velocity are defined to evaluate cushion performance.According to these optimized objectives,the non-linear programming by quadratic Lagrange(NLPQL)algorithm is applied to optimize the structure parameters.The optimization results indicate that the peak cushion pressure is reduced by 28%and terminal velocity is reduced by 21%without reduction of average velocity.展开更多
In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance...In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance,the flexibility of the rotating beam,and the coupled dynamic characteristics of the hydraulic cylinder.A modified contact force model was developed to simulate the physical properties of realistic revolute joints with small clearances,heavy loads,and variable contact stiffnesses and damping coefficients with variations of the indentations.Considering the strong coupling relationship between the hydraulic cylinder and the flexible beam,a system equation of motion combining the state variables of the hydraulic cylinder and mechanical system was established.The complex nonlinear friction force of the hydraulic cylinder motion was constructed using a modified Lu Gre model,and the parameters of the friction model were identified using intelligent identification algorithms.Moreover,a test system for the shell manipulator was established to achieve experimental validation.Finally,the effects of the clearance size and the stiffness of the cylinder support on the dynamic response were investigated.展开更多
A kind of four degree-of-freedom (DOF) electrohydraulic lift system is studied in this pa- per, after analyzing the motion characteristics and the mathematic model of the hydraulic cylinders, a cross-coupled synchro...A kind of four degree-of-freedom (DOF) electrohydraulic lift system is studied in this pa- per, after analyzing the motion characteristics and the mathematic model of the hydraulic cylinders, a cross-coupled synchronization method with load force and synchronization error feedback had been proposed to solve the synchronization problem encountered when realizing the needed roll and pitch attitude of the lift system. In this paper, mathematic model of asymmetric hydraulic cylinder was es- tablished and the lift system had been simplified to a dual-cylinder system. By incorporating the load force and the displacement of each cylinder, a cross-coupled synchronized control method was pro- posed to fit each cylinder' s tracking performance and multi-cylinder' s trajectory synchronization property. The proposed method not only solved the synchronization problem when multi-cylinder had a same trajectory, but also could fit the coordinated synchronization need when different trajectories of multi-cylinder were desired. Simulations and experiments on a four DOF electrohydraulic lift sys- tem with load of 100 tons verified the effectiveness of the proposed method.展开更多
A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation ...A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.展开更多
Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics i...Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI(fluid-structure interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.展开更多
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.展开更多
Hydraulic equipment is widely applied in the fields of engineering construction, manufacture and mining. As the core component of hydraulic equipment, hydraulic cylinder will directly affect the whole operation of hyd...Hydraulic equipment is widely applied in the fields of engineering construction, manufacture and mining. As the core component of hydraulic equipment, hydraulic cylinder will directly affect the whole operation of hydraulic equipment. This paper will analyze the improvement of hydraulic cylinder structure and expect to enhance its reliability and stability.展开更多
The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used...The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used in industrial control. Based on the guide sleeve of hydrostatic seal of hydraulic cylinder, the reasonable number of oil chamber of guide sleeve is studied in this paper. ICEM CFD software and FLUENT simulation software are used to calculate and analyze the number of different oil chambers of guide sleeve of hydrostatic seal. The temperature field of piston rod with different moving speed, different initial pressure of oil chamber and oil film under different number of oil chambers is analyzed. The relationship between the pressure field and temperature field provides a better basis for optimizing the design of hydrostatic guide sleeve and helps to improve the servo drive cylinder.展开更多
This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine ...This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine system development, the material for each component of the machine system was first selected, the boom length, maximum boom angle, force and stroke length of each hydraulic cylinder, the hydraulic pump pressure, base weight, permissible weight of the cutting system and power required were then calculated in the design analysis. Furthermore, from the calculated parameters, the model of the system was created using SolidWorks engineering software, the model was developed and tested. The result shows that the cutting time of the system for one bunch of palm fruit was longer when compared to conventional systems. It was concluded that though the machine is maintenance friendly and portable, further improvements in its design are necessary so as to develop a system that will give desirable economic output at a shorter time.展开更多
The design of sleeve detach and reunion drive device of screw melt ex- truder equipment was optimized, based on the present installation of hygraulic drive device to achieve the mechanical opening and closing of the s...The design of sleeve detach and reunion drive device of screw melt ex- truder equipment was optimized, based on the present installation of hygraulic drive device to achieve the mechanical opening and closing of the sleeve, the dynamic model of the sleeve detach and reunion drive was theoretically measured, and it was verified that the device is simple to operate and convenient to maintain, thus it has great social values.展开更多
A test system was designed to study the parameters affecting the volumetric efficiency of a thick-material pump for coal slime.The parameters studied included solid concentration,the slenderness ratio of the suction c...A test system was designed to study the parameters affecting the volumetric efficiency of a thick-material pump for coal slime.The parameters studied included solid concentration,the slenderness ratio of the suction cylinder and the running speed of the hydraulic cylinder.In the experiment the concentrations of coal slime were 75.7%,76.3%,74.4%,73.5%,72.1%and 70.63%;the running speeds were 0.23,0.18,0.13,0.10 and 0.08 m/s;and the slenderness ratios of the suction cylinder were 1.63,2.26,2.88,3.50,4.13,4.78 and 5.38.The results show that the suction volumetric efficiency decreases gradually with an increase in material concentration.The critical concentration value is 72%;below 72%the suction volumetric efficiency is above 90%,otherwise it decreases rapidly.When the solid concentration reaches 76.3%,the suction volumetric efficiency is only 40%.When the running speed of the piston is less than or equal to 0.23 m/s,the suction volumetric efficiency increases with an increase in running speed.展开更多
In this paper, single, two-position, two-way proportional valve is used to carry out the positon control of asymmetrical hydraulic cylinder with two chambers connected. The system structure and the working princle are...In this paper, single, two-position, two-way proportional valve is used to carry out the positon control of asymmetrical hydraulic cylinder with two chambers connected. The system structure and the working princle are introduced. The dynamic model of the asymmetrical hydraulic cylinder system is established with power bond graphs method, and becomes a fundament for analyzing the system. Sliding mode controller is designed, and the stability of the control system is analyzed. The simulation results indicate that the sliding mode controller designed can actualize the position control of asymmetrical hydraulic cylinder system, and controller is superior to traditional PID controller when the load changes in some range.展开更多
Hydraulic erecting systems are widely used in missile and rocket launchers because of their high power density.The double-acting telescopic hydraulic cylinder(DATHC)plays a decisive role in the safe and proper operati...Hydraulic erecting systems are widely used in missile and rocket launchers because of their high power density.The double-acting telescopic hydraulic cylinder(DATHC)plays a decisive role in the safe and proper operation of such systems.In particular,improper design of effective areas of a DATHC could potentially lead to an overspeed descent with severe damage for the erecting system.Unfortunately,there is no design constraint for DATHC to prevent this.Therefore,in this paper,a simplified and practical design constraint is proposed.Based on a developed mathematical model of a typical erecting system,we simulated and analyzed not only six cases meeting and not meeting the design constraint,but also the effectiveness of the design constraint under different loads.Experiments were then carried out under four cases.Simulation and experimental results validate the simplified design constraint,a constraint inequation guiding the design of diameters of effective areas for a DATHC.展开更多
High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model c...High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.展开更多
文摘Trends in modern industry show a tendency towards demassovization of production as a response to the customers' specific needs for unique and personalized products. This provokes significant changes in the processes of manufacturing, assembly, and testing The cost of such a type of production can be reduced by employing highly productive reconfigurable equipment with proper software to enable optimization. This paper presents a decision support extension for directing of hydraulic cylinders to assembly-testing lines using fuzzy logic in the Enterprise Resource Planning system of a small size production in a factory in Bulgaria. Different assembly-testing lines are flexibly assigned to the specific cylinder's parameters by the developed fuzzy system on the basis of the overlapping of parameters in the hydraulic cylinders classification. The final decision on the line assigned in case of alternatives is made through accounting for the minimal cylinder delay time. The effectiveness of the approach is assessed by simulation. It leads to an increase of the efficiency of the assembly-testing flow lines, a reduction of the time needed for hydraulic cylinders assembling and testing and balanced loading of the modules.
基金National Natural Science Foundation of China(51705152)Jiangxi Provincial Natural Science Foundation(20161BAB206150+2 种基金20161BAB216133)Jiangxi Provincial Key R&D Program(20171BBG70040)Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2018-S246)。
文摘An inside-cushion structure with sidestep and taper-shaped plungers is studied to address the problems of high impact and vibration in high-speed hydraulic cylinders.First,the three stages of cushion processes are discussed according to the varying flow area as the piston moves.Then,to establish a precise mathematical model,the states of the flow field are estimated in terms of the Reynolds number.Accordingly,the simulation model parameterized against measured data is developed and verified by experiment.Last,the average velocity,peak cushion pressure,and terminal velocity are defined to evaluate cushion performance.According to these optimized objectives,the non-linear programming by quadratic Lagrange(NLPQL)algorithm is applied to optimize the structure parameters.The optimization results indicate that the peak cushion pressure is reduced by 28%and terminal velocity is reduced by 21%without reduction of average velocity.
基金supported by the National Natural Science Foundation of China [grant number 11472137]the Fundamental Research Funds for the Central Universities [grant numbers 309181A8801,30919011204]。
文摘In this study,a modeling method for investigating the dynamic characteristics of a hydraulically driven shell manipulator with revolute clearance joints is presented.This model accounts for the effect of the clearance,the flexibility of the rotating beam,and the coupled dynamic characteristics of the hydraulic cylinder.A modified contact force model was developed to simulate the physical properties of realistic revolute joints with small clearances,heavy loads,and variable contact stiffnesses and damping coefficients with variations of the indentations.Considering the strong coupling relationship between the hydraulic cylinder and the flexible beam,a system equation of motion combining the state variables of the hydraulic cylinder and mechanical system was established.The complex nonlinear friction force of the hydraulic cylinder motion was constructed using a modified Lu Gre model,and the parameters of the friction model were identified using intelligent identification algorithms.Moreover,a test system for the shell manipulator was established to achieve experimental validation.Finally,the effects of the clearance size and the stiffness of the cylinder support on the dynamic response were investigated.
文摘A kind of four degree-of-freedom (DOF) electrohydraulic lift system is studied in this pa- per, after analyzing the motion characteristics and the mathematic model of the hydraulic cylinders, a cross-coupled synchronization method with load force and synchronization error feedback had been proposed to solve the synchronization problem encountered when realizing the needed roll and pitch attitude of the lift system. In this paper, mathematic model of asymmetric hydraulic cylinder was es- tablished and the lift system had been simplified to a dual-cylinder system. By incorporating the load force and the displacement of each cylinder, a cross-coupled synchronized control method was pro- posed to fit each cylinder' s tracking performance and multi-cylinder' s trajectory synchronization property. The proposed method not only solved the synchronization problem when multi-cylinder had a same trajectory, but also could fit the coordinated synchronization need when different trajectories of multi-cylinder were desired. Simulations and experiments on a four DOF electrohydraulic lift sys- tem with load of 100 tons verified the effectiveness of the proposed method.
基金Project(51275499)supported by the National Natural Science Foundation of ChinaProject(2013CB035404)supported by the National Basic Research Program("973" Program)of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups,National Natural Science Foundation of China
文摘A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.
基金supported by the International Cooperation on Technology Development Program of the Korea Institute for Advancement of Technology ( KIAT),Republic of Korea ( N0000902)
文摘Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI(fluid-structure interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61105086)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12)Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
文摘The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.
文摘Hydraulic equipment is widely applied in the fields of engineering construction, manufacture and mining. As the core component of hydraulic equipment, hydraulic cylinder will directly affect the whole operation of hydraulic equipment. This paper will analyze the improvement of hydraulic cylinder structure and expect to enhance its reliability and stability.
基金supported by the National 863 Project(2011AA040701)
文摘The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used in industrial control. Based on the guide sleeve of hydrostatic seal of hydraulic cylinder, the reasonable number of oil chamber of guide sleeve is studied in this paper. ICEM CFD software and FLUENT simulation software are used to calculate and analyze the number of different oil chambers of guide sleeve of hydrostatic seal. The temperature field of piston rod with different moving speed, different initial pressure of oil chamber and oil film under different number of oil chambers is analyzed. The relationship between the pressure field and temperature field provides a better basis for optimizing the design of hydrostatic guide sleeve and helps to improve the servo drive cylinder.
文摘This research paper presents a comprehensive conceptual design approach for the development of a telescopic machine system, which is portable and will provide a safe method of harvesting palm fruits. For this machine system development, the material for each component of the machine system was first selected, the boom length, maximum boom angle, force and stroke length of each hydraulic cylinder, the hydraulic pump pressure, base weight, permissible weight of the cutting system and power required were then calculated in the design analysis. Furthermore, from the calculated parameters, the model of the system was created using SolidWorks engineering software, the model was developed and tested. The result shows that the cutting time of the system for one bunch of palm fruit was longer when compared to conventional systems. It was concluded that though the machine is maintenance friendly and portable, further improvements in its design are necessary so as to develop a system that will give desirable economic output at a shorter time.
文摘The design of sleeve detach and reunion drive device of screw melt ex- truder equipment was optimized, based on the present installation of hygraulic drive device to achieve the mechanical opening and closing of the sleeve, the dynamic model of the sleeve detach and reunion drive was theoretically measured, and it was verified that the device is simple to operate and convenient to maintain, thus it has great social values.
基金Projects 02C26211100499 supported by Science and Technology Corporation Innovation Fund of China 20020290011 by the Ph.D Program Fund
文摘A test system was designed to study the parameters affecting the volumetric efficiency of a thick-material pump for coal slime.The parameters studied included solid concentration,the slenderness ratio of the suction cylinder and the running speed of the hydraulic cylinder.In the experiment the concentrations of coal slime were 75.7%,76.3%,74.4%,73.5%,72.1%and 70.63%;the running speeds were 0.23,0.18,0.13,0.10 and 0.08 m/s;and the slenderness ratios of the suction cylinder were 1.63,2.26,2.88,3.50,4.13,4.78 and 5.38.The results show that the suction volumetric efficiency decreases gradually with an increase in material concentration.The critical concentration value is 72%;below 72%the suction volumetric efficiency is above 90%,otherwise it decreases rapidly.When the solid concentration reaches 76.3%,the suction volumetric efficiency is only 40%.When the running speed of the piston is less than or equal to 0.23 m/s,the suction volumetric efficiency increases with an increase in running speed.
基金the National Natural Science Foundation of China(No.50575202)
文摘In this paper, single, two-position, two-way proportional valve is used to carry out the positon control of asymmetrical hydraulic cylinder with two chambers connected. The system structure and the working princle are introduced. The dynamic model of the asymmetrical hydraulic cylinder system is established with power bond graphs method, and becomes a fundament for analyzing the system. Sliding mode controller is designed, and the stability of the control system is analyzed. The simulation results indicate that the sliding mode controller designed can actualize the position control of asymmetrical hydraulic cylinder system, and controller is superior to traditional PID controller when the load changes in some range.
基金This work is supported by the National Natural Science Foundation of China(No.91748210)the National Outstanding Youth Science Foundation of China(No.51922093).
文摘Hydraulic erecting systems are widely used in missile and rocket launchers because of their high power density.The double-acting telescopic hydraulic cylinder(DATHC)plays a decisive role in the safe and proper operation of such systems.In particular,improper design of effective areas of a DATHC could potentially lead to an overspeed descent with severe damage for the erecting system.Unfortunately,there is no design constraint for DATHC to prevent this.Therefore,in this paper,a simplified and practical design constraint is proposed.Based on a developed mathematical model of a typical erecting system,we simulated and analyzed not only six cases meeting and not meeting the design constraint,but also the effectiveness of the design constraint under different loads.Experiments were then carried out under four cases.Simulation and experimental results validate the simplified design constraint,a constraint inequation guiding the design of diameters of effective areas for a DATHC.
基金supported by the National Natural Science Foundation of China (Grant No. 50875234)the National Science and Technology Support Program of China (Grant No. 2006BAF01B09-7)
文摘High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.