A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional vatve. The proposed robust controller does not need to design stable compensator ...A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional vatve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.展开更多
By cavitation tests and scanning electron microscope (SEM) microanalysis, the micro-appearance of cavitation samples is studied. It is the first time that the micro-appearance of metals is pursued successfully. Acco...By cavitation tests and scanning electron microscope (SEM) microanalysis, the micro-appearance of cavitation samples is studied. It is the first time that the micro-appearance of metals is pursued successfully. According to the changing course of the micro-appearance of metals, the damaging course of cavitation erosion is determined. The destructive way of collapsing bubbles on the metal surface is known. Firstly cavitation pinholes appear on the metal surface, then cracks generate and grow under the action of collapsing bubbles. When cracks connect each other, small pieces are removed from pinhole wall and pinholes develop into cavitation pits. When the previous surface is removed completely, new pinholes are produced again on the new surface. A pinhole is the result of the powerful striking of a micro-liquid jet ejected by a large collapsed bubble near the surface. At some stages, cracks grow in the way of fatigue. The corrosion phenomenon is observed during the cavitation erosion. The cavitation pattern can be used to explain the cavitation pregnancy and the changing regulation of sample surface.展开更多
Many high-quality forging productions require the large-sized hydraulic press machine(HPM) to have a desirable dynamic response. Since the forging process is complex under the low velocity, its response is difficult...Many high-quality forging productions require the large-sized hydraulic press machine(HPM) to have a desirable dynamic response. Since the forging process is complex under the low velocity, its response is difficult to estimate. And this often causes the desirable low-velocity forging condition difficult to obtain. So far little work has been found to estimate the dynamic response of the forging process under low velocity. In this paper, an approximate-model based estimation method is proposed to estimate the dynamic response of the forging process under low velocity. First, an approximate model is developed to represent the forging process of this complex HPM around the low-velocity working point. Under guaranteeing the modeling performance, the model may greatly ease the complexity of the subsequent estimation of the dynamic response because it has a good linear structure. On this basis, the dynamic response is estimated and the conditions for stability, vibration, and creep are derived according to the solution of the velocity. All these analytical results are further verified by both simulations and experiment. In the simulation verification for modeling, the original movement model and the derived approximate model always have the same dynamic responses with very small approximate error. The simulations and experiment finally demonstrate and test the effectiveness of the derived conditions for stability, vibration, and creep, and these conditions will benefit both the prediction of the dynamic response of the forging process and the design of the controller for the high-quality forging. The proposed method is an effective solution to achieve the desirable low-velocity forging condition.展开更多
In the process of coal mine drilling,controlling the rotary speed is important as it determines the efficiency and safety of drilling.In this paper,a linear extended state observer(LESO)based backstepping controller f...In the process of coal mine drilling,controlling the rotary speed is important as it determines the efficiency and safety of drilling.In this paper,a linear extended state observer(LESO)based backstepping controller for rotary speed is proposed,which can overcome the impact of changes in coal seam hardness on rotary speed.Firstly,the influence of coal seam hardness on the drilling rig’s rotary system is considered for the first time,which is reflected in the numerical variation of load torque,and a dynamic model for the design of rotary speed controller is established.Then an LESO is designed to observe the load torque,and feedforward compensation is carried out to overcome the influence of coal seam hardness.Based on the model of the compensated system,a backstepping method is used to design a controller to achieve tracking control of the rotary speed.Finally,the effectiveness of the controller designed in this paper is demonstrated through simulation and field experiments,the steady-state error of the rotary speed in field is 1 r/min,and the overshoot is reduced to 5.8%.This greatly improves the stability and security,which is exactly what the drilling process requires.展开更多
基金Shanghai Municipal Natural Science Foundation of China (No.06111003)
文摘A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional vatve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.
文摘By cavitation tests and scanning electron microscope (SEM) microanalysis, the micro-appearance of cavitation samples is studied. It is the first time that the micro-appearance of metals is pursued successfully. According to the changing course of the micro-appearance of metals, the damaging course of cavitation erosion is determined. The destructive way of collapsing bubbles on the metal surface is known. Firstly cavitation pinholes appear on the metal surface, then cracks generate and grow under the action of collapsing bubbles. When cracks connect each other, small pieces are removed from pinhole wall and pinholes develop into cavitation pits. When the previous surface is removed completely, new pinholes are produced again on the new surface. A pinhole is the result of the powerful striking of a micro-liquid jet ejected by a large collapsed bubble near the surface. At some stages, cracks grow in the way of fatigue. The corrosion phenomenon is observed during the cavitation erosion. The cavitation pattern can be used to explain the cavitation pregnancy and the changing regulation of sample surface.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB706802)National Natural Science Foundation of China(Grant No.51205420)+1 种基金Program for New Century Excellent Talents in University of China(Grant No.NCET-13-0593)Hunan Provincial Natural Science Foundation of China(Grant No.14JJ3011)
文摘Many high-quality forging productions require the large-sized hydraulic press machine(HPM) to have a desirable dynamic response. Since the forging process is complex under the low velocity, its response is difficult to estimate. And this often causes the desirable low-velocity forging condition difficult to obtain. So far little work has been found to estimate the dynamic response of the forging process under low velocity. In this paper, an approximate-model based estimation method is proposed to estimate the dynamic response of the forging process under low velocity. First, an approximate model is developed to represent the forging process of this complex HPM around the low-velocity working point. Under guaranteeing the modeling performance, the model may greatly ease the complexity of the subsequent estimation of the dynamic response because it has a good linear structure. On this basis, the dynamic response is estimated and the conditions for stability, vibration, and creep are derived according to the solution of the velocity. All these analytical results are further verified by both simulations and experiment. In the simulation verification for modeling, the original movement model and the derived approximate model always have the same dynamic responses with very small approximate error. The simulations and experiment finally demonstrate and test the effectiveness of the derived conditions for stability, vibration, and creep, and these conditions will benefit both the prediction of the dynamic response of the forging process and the design of the controller for the high-quality forging. The proposed method is an effective solution to achieve the desirable low-velocity forging condition.
基金supported by the National Natural Science Foundation of China under Grant Nos.62373334,62273317,and 61973286the 111 Project under Grant No.B17040the Fundamental Indoor Funds for the Central Universities,China University of Geosciences under Grant No.2021063.
文摘In the process of coal mine drilling,controlling the rotary speed is important as it determines the efficiency and safety of drilling.In this paper,a linear extended state observer(LESO)based backstepping controller for rotary speed is proposed,which can overcome the impact of changes in coal seam hardness on rotary speed.Firstly,the influence of coal seam hardness on the drilling rig’s rotary system is considered for the first time,which is reflected in the numerical variation of load torque,and a dynamic model for the design of rotary speed controller is established.Then an LESO is designed to observe the load torque,and feedforward compensation is carried out to overcome the influence of coal seam hardness.Based on the model of the compensated system,a backstepping method is used to design a controller to achieve tracking control of the rotary speed.Finally,the effectiveness of the controller designed in this paper is demonstrated through simulation and field experiments,the steady-state error of the rotary speed in field is 1 r/min,and the overshoot is reduced to 5.8%.This greatly improves the stability and security,which is exactly what the drilling process requires.