In conjunction with the working characteristics of the high-clearance wheeled sprayer and the benefits of the closed hydraulic system,a series of reasonable working parameters should be established,and a hydraulic sys...In conjunction with the working characteristics of the high-clearance wheeled sprayer and the benefits of the closed hydraulic system,a series of reasonable working parameters should be established,and a hydraulic system that fulfills the requisite specifications should be designed.The AMESim software model is employed to construct a closed hydraulic transmission system,and the simulation analysis is then performed according to the data of hydraulic components.According to analysis results,the prototype can be optimized and upgraded,and a verification test is further carried out.The test results demonstrate that the designed closed hydraulic transmission system meets the actual working requirements of the high-clearance wheeled sprayer and provides a stable experimental platform for intelligent control of agricultural machinery.展开更多
GO methodology is a success-oriented method for system reliability analysis. There are components with multi-fault modes in repairable systems. It is a problem to use the existing GO method to make reliability analysi...GO methodology is a success-oriented method for system reliability analysis. There are components with multi-fault modes in repairable systems. It is a problem to use the existing GO method to make reliability analysis of such repairable systems. A new GO method for reliability analysis of such repairable systems with multifault modes was presented. Firstly, calculation equations of reliability parameters of operators which were used to describe components with multi-fault modes in reparable systems were derived based on Markov process theory. Then, this new GO method was applied in reliability analysis of a hydraulic transmission oil supply system( HTOSS) of a power-shift steering transmission at low and high speeds. Finally,Compared with fault tree analysis( FTA) and Monte Carlo simulation,the results show that this new GO method is correct and suitable for reliability analysis of repairable system with multi-fault modes.展开更多
For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditio...For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditional fixed pump with a particular focus on its low-speed performance.The pump is characterized by small internal leakage at low wind speeds and high volumetric efficiency,which is beneficial to improve the power generation efficiency of the system.A new linear control method based on the PID algorithm and feedforward compensation was proposed to obtain the constant speed output control of variable motor at low wind speed.With the model for wind turbine and fixed pump-variable motor main drive system,the system was simulated and experimentally proved to verify the feasibility and anti-interference performance of the system control method at low wind speeds.A promising outcome was obtained on the response characteristics of system power and efficiency at low wind speeds.This can be a powerful technical support for the normal ustility of hydraulic drive wind turbines.展开更多
Tidal current turbines(TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydro...Tidal current turbines(TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.展开更多
With an advanced foreign hydraulic automatic transmission as the objective,an analytical method for the gear-shifting schedule is proposed.First the demanded maximum gradient of test is estimated.Then a test scheme an...With an advanced foreign hydraulic automatic transmission as the objective,an analytical method for the gear-shifting schedule is proposed.First the demanded maximum gradient of test is estimated.Then a test scheme and analytical procedure is formulated by initial test and hypothetical shift parameters.Finally through gear-shifting tests under different road conditions,load,accelerator pedal position limitation,throttle opening and output shaft speed are found to be the gear-shifting parameters.Under a common road condition,the gear-shifting schedule is a double-parameter schedule.Based on the driver's demands on braking and dynamic performance,different shift schedules are made under downhill,uphill and quick releasing acceleration pedal conditions.The operation criteria of down-shift schedule on abrupt grade are proposed.展开更多
From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction veh...From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.展开更多
According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to s...According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~展开更多
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the...Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.展开更多
Hydraulic and layer parameters of groundwater aquifer have been evaluated in parts of Buruku and Gboko local government area councils, for the primary purpose of assessing quality and potential of groundwater in the a...Hydraulic and layer parameters of groundwater aquifer have been evaluated in parts of Buruku and Gboko local government area councils, for the primary purpose of assessing quality and potential of groundwater in the areas. A total of 18 Vertical Electrical Sounding (VES) stations were occupied along traverse lines using the Schlumberger electrode configuration. The results revealed a characteristic QQA, QHH and QH type curves, with 6 - 7 geoelectric subsurface layers. The geoelectric layers are dominantly sandy with intercalations of shale at shallow depths in most stations. The aquiferous layers were delineated at the fourth and fifth geoelectric layers with average aquifer resistivity and depth of 420.56 Ω·m and 69.1 m, respectively. Groundwater flow is generally from the northeast to the southwest in line with the tectonics of the Benue trough. Two potential groundwater zones were delineated. These are the zone of poor quality water to the north (central) and east of the area of high potential and the zone of quality groundwater to the northeast, west and southwest of low potential. The study revealed that productive boreholes for excellent and sustainable yields were more viable in the northern (central) and eastern parts of the study area than in the northeast, west and southwest parts.展开更多
The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the ap...The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the application requirements.A certain amount of pumps or motors can be formed in one shell,and these sub-pumps or sub-motors can work alone or be combined without influence on each other.So this kind of double-stator pump(motor) is called a multi-pump(multi-motor).Through the analysis of multifarious connection modes of the double-acting double-stator multi-pumps and multi-motors,the mathematical expressions of the output flow rate and the rotational speed are acquired.The results indicate that a quantity of different flow rates can be provided by one fixed-displacement multi-pump under the condition of unalterable driven speed by electromotor.Likewise,when supplied by settled input flow,without complex variable mechanism,the functions of double-speed,multiple-speed,and even differential connection can be obtained by employing the use of a double-stator multi-motor.The novel hydraulic transmission is made of such a double-stator multi-pump and multi-motor,and has broad application prospects.展开更多
基金Supported by 2023 Xinjiang Uygur Autonomous Region R&D and Promotion and Application of Key Technologies of CNC Sprayer for Seed Corn(2023NC010).
文摘In conjunction with the working characteristics of the high-clearance wheeled sprayer and the benefits of the closed hydraulic system,a series of reasonable working parameters should be established,and a hydraulic system that fulfills the requisite specifications should be designed.The AMESim software model is employed to construct a closed hydraulic transmission system,and the simulation analysis is then performed according to the data of hydraulic components.According to analysis results,the prototype can be optimized and upgraded,and a verification test is further carried out.The test results demonstrate that the designed closed hydraulic transmission system meets the actual working requirements of the high-clearance wheeled sprayer and provides a stable experimental platform for intelligent control of agricultural machinery.
基金Technical Basis Projects of China's MIIT(No.2012090003)
文摘GO methodology is a success-oriented method for system reliability analysis. There are components with multi-fault modes in repairable systems. It is a problem to use the existing GO method to make reliability analysis of such repairable systems. A new GO method for reliability analysis of such repairable systems with multifault modes was presented. Firstly, calculation equations of reliability parameters of operators which were used to describe components with multi-fault modes in reparable systems were derived based on Markov process theory. Then, this new GO method was applied in reliability analysis of a hydraulic transmission oil supply system( HTOSS) of a power-shift steering transmission at low and high speeds. Finally,Compared with fault tree analysis( FTA) and Monte Carlo simulation,the results show that this new GO method is correct and suitable for reliability analysis of repairable system with multi-fault modes.
基金supported by Chongqing Natural Science Foundation(cstc2019jcyj⁃msxm2000),Chongqing University of Science and Technology Graduate Science and Technology Innovation Project(JXXY201901)。
文摘For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditional fixed pump with a particular focus on its low-speed performance.The pump is characterized by small internal leakage at low wind speeds and high volumetric efficiency,which is beneficial to improve the power generation efficiency of the system.A new linear control method based on the PID algorithm and feedforward compensation was proposed to obtain the constant speed output control of variable motor at low wind speed.With the model for wind turbine and fixed pump-variable motor main drive system,the system was simulated and experimentally proved to verify the feasibility and anti-interference performance of the system control method at low wind speeds.A promising outcome was obtained on the response characteristics of system power and efficiency at low wind speeds.This can be a powerful technical support for the normal ustility of hydraulic drive wind turbines.
基金Project supported by the National Natural Science of China (Nos. 50505043 and 50735004)the National High Tech R&D Program (863) of China (No. 2007AA05Z443)
文摘Tidal current turbines(TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA112101)
文摘With an advanced foreign hydraulic automatic transmission as the objective,an analytical method for the gear-shifting schedule is proposed.First the demanded maximum gradient of test is estimated.Then a test scheme and analytical procedure is formulated by initial test and hypothetical shift parameters.Finally through gear-shifting tests under different road conditions,load,accelerator pedal position limitation,throttle opening and output shaft speed are found to be the gear-shifting parameters.Under a common road condition,the gear-shifting schedule is a double-parameter schedule.Based on the driver's demands on braking and dynamic performance,different shift schedules are made under downhill,uphill and quick releasing acceleration pedal conditions.The operation criteria of down-shift schedule on abrupt grade are proposed.
基金supported by Research Fund for Doctoral Program of Higher Education of China (No.20020183003)
文摘From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.
基金Supported by the National Key Basic Research Development Program of China(No.2014CB046405)the National Natural Science Foundation of China(No.51475406,51405423)the Hebei Youth Fund(No.QN20132017)
文摘According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA11A223)
文摘Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.
文摘Hydraulic and layer parameters of groundwater aquifer have been evaluated in parts of Buruku and Gboko local government area councils, for the primary purpose of assessing quality and potential of groundwater in the areas. A total of 18 Vertical Electrical Sounding (VES) stations were occupied along traverse lines using the Schlumberger electrode configuration. The results revealed a characteristic QQA, QHH and QH type curves, with 6 - 7 geoelectric subsurface layers. The geoelectric layers are dominantly sandy with intercalations of shale at shallow depths in most stations. The aquiferous layers were delineated at the fourth and fifth geoelectric layers with average aquifer resistivity and depth of 420.56 Ω·m and 69.1 m, respectively. Groundwater flow is generally from the northeast to the southwest in line with the tectonics of the Benue trough. Two potential groundwater zones were delineated. These are the zone of poor quality water to the north (central) and east of the area of high potential and the zone of quality groundwater to the northeast, west and southwest of low potential. The study revealed that productive boreholes for excellent and sustainable yields were more viable in the northern (central) and eastern parts of the study area than in the northeast, west and southwest parts.
基金Project(No.50975246)supported by the National Natural Science Foundation of China
文摘The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the application requirements.A certain amount of pumps or motors can be formed in one shell,and these sub-pumps or sub-motors can work alone or be combined without influence on each other.So this kind of double-stator pump(motor) is called a multi-pump(multi-motor).Through the analysis of multifarious connection modes of the double-acting double-stator multi-pumps and multi-motors,the mathematical expressions of the output flow rate and the rotational speed are acquired.The results indicate that a quantity of different flow rates can be provided by one fixed-displacement multi-pump under the condition of unalterable driven speed by electromotor.Likewise,when supplied by settled input flow,without complex variable mechanism,the functions of double-speed,multiple-speed,and even differential connection can be obtained by employing the use of a double-stator multi-motor.The novel hydraulic transmission is made of such a double-stator multi-pump and multi-motor,and has broad application prospects.