A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage me...A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model, two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach.展开更多
A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical m...A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.展开更多
基金The work was supported in part by the EPSRC research council(No. GR/M29108/01).
文摘A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model, two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach.
文摘A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.