期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Quantitative effect of kerogen type on the hydrocarbon generation potential of Paleogene lacustrine source rocks,Liaohe Western Depression,China 被引量:1
1
作者 Sha-Sha Hui Xiong-Qi Pang +7 位作者 Fu-Jie Jiang Chen-Xi Wang Shu-Xing Mei Tao Hu Hong Pang Min Li Xiao-Long Zhou Kan-Yuan Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ... Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration. 展开更多
关键词 Kerogen type hydrocarbon generation potential Lacustrine source rocks Liaohe western depression
下载PDF
Influence of Magmatic Intrusion on Abnormal Hydrocarbon Generation and Expulsion of Source Rock:A Case Study of the Dongying Sag,Bohai Bay Basin
2
作者 LI Chuanming ZENG Jianhui +2 位作者 WANG Maoyun LONG Hui LIU Shuning 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1322-1337,共16页
How gabbro affects the generation and expulsion of hydrocarbons in muddy surrounding rocks is clarified by analyzing thin section,major and trace elements,total organic carbon(TOC),pyrolysis,extracts and vitrinite ref... How gabbro affects the generation and expulsion of hydrocarbons in muddy surrounding rocks is clarified by analyzing thin section,major and trace elements,total organic carbon(TOC),pyrolysis,extracts and vitrinite reflectance data from source rocks in the Chunxi area the Dongying Sag,Bohai Bay Basin,eastern China.The results show that a magma intrusion brings copious heat to the source rocks,which promotes abnormal maturation of organic matter(OM)and rapid hydrocarbon generation.The CH_(4)and H_(2)produced by gabbro alteration play a role in hydrocarbon generation of source rocks.The hydrothermal process during magma intrusion provides many different minerals to the source rock,resulting in carbonate-rich surrounding mudstone.The carbonate and clay minerals produced by volcanic mineral alteration jointly catalyze the hydrocarbon generation of the source rock.The high-temperature baking of the intrusion results in hydrothermal pressurization and hydrocarbon generation pressurization,causing many fractures in the surrounding rock.The generated oil and gas are discharged through the fractures under diffusion and pressure.Mantle-derived CO_(2)is also conducive to the expulsion of hydrocarbons because of its strong enrichment capacity for hydrocarbons. 展开更多
关键词 igneous rock hydrocarbon generation source rock high temperature CATALYSIS EOCENE Dongying Sag
下载PDF
Hydrocarbon Generation Potential and Organic Matter Enrichment Mechanism of the Cambrian Marine Shale in the Tadong Low Uplift,Tarim Basin
3
作者 MIAO Huan WANG Yanbin +5 位作者 JIANG Zhenxue ZHAO Shihu SHANG Peng GONG Xun TAO Chuanqi ZHANG Yu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1301-1321,共21页
Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tado... Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tadong low uplift in the Tarim Basin of western China,specifically the Xidashan-Xishanbulake Formation(Fm.)and overlying Moheershan Fm.provide a case study through the use of organic petrology,mineralogy,organic and elemental geochemistry,with the aim of analyzing and exploring the hydrocarbon generation potential(PG)and organic matter(OM)enrichment mechanisms within these shale formations.The results indicate that:(1)the Cambrian shale of the Tadong low uplift exhibits relatively dispersed OM that consists of vitrinite-like macerals and solid bitumen.These formations have a higher content of quartz and are primarily composed of silica-based lithology;(2)shale samples from the Xidashan-Xishanbulake and Moheershan formations demonstrate high total organic carbon(TOC)and low pyrolytic hydrocarbon content(S_(2))content.The OM is predominantly typeⅠand typeⅡkerogens,indicating a high level of maturation in the wet gas period.These shales have undergone extensive hydrocarbon generation,showing characteristics of relatively poor PG;(3)the sedimentary environments of the Xidashan-Xishanbulake and Moheershan formations in the Tadong low uplift are similar.They were deposited in warm and humid climatic conditions,in oxygen-deficient environments,with stable terrigenous inputs,high paleoproductivity,high paleosalinity,weak water-holding capacity,and no significant hydrothermal activity;and(4)the relationship between TOC and the paleoproductivity parameter(P/Ti)is most significant in the Lower Cambrian Xidashan-Xishanbulake Fm.,whereas correlation with other indicators is not evident.This suggests a productivity-driven OM enrichment model,where input of landderived material was relatively small during the Middle Cambrian,and the ancient water exhibited lower salinity.A comprehensive pattern was formed under the combined control of paleoproductivity and preservation conditions.This study provides valuable guidance for oil and gas exploration in the Tarim Basin. 展开更多
关键词 Conventional resources hydrocarbon generation potential geochemistry sedimentary environment enrichment mechanism organic matter CAMBRIAN Tadong low uplift
下载PDF
Impact of volcanism on the formation and hydrocarbon generation of organic-rich shale in the Jiyang Depression, Bohai Bay Basin, China
4
作者 Jia-Hong Gao Xin-Ping Liang +5 位作者 Zhi-Jun Jin Quan-You Liu Chang-Rong Li Xiao-Wei Huang Ju-Ye Shi Peng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1539-1551,共13页
Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the o... Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China. 展开更多
关键词 Volcanic ash hydrocarbon generation Organic-rich shale Shahejie Formation Jiyang Depression
下载PDF
Effects of hydrocarbon generation on fluid flow in the Ordos Basin and its relationship to uranium mineralization 被引量:12
5
作者 Chunji Xue Guoxiang Chi Wei Xue 《Geoscience Frontiers》 SCIE CAS 2011年第3期439-447,共9页
The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbon... The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing, reducing fluid and a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sedi- ment compaction and heating. Our results indicate that when hydrocarbon generation is taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simu- lation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow. 展开更多
关键词 Ordos Basin Uranium deposits HYDRODYNAMICS hydrocarbon generation Fluid overpressure Fluid flow Numerical modeling
下载PDF
Hydrocarbon Generation Evolution of Permo-Carboniferous Rocks of the Bohai Bay Basin in China 被引量:6
6
作者 ZHU Yanming QIN Yong +2 位作者 SANG Shuxun CHEN Shangbin LAN Xiaodong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第2期370-381,共12页
The Bohai Bay Basin is a Mesozoic subsidence and Cenozoic rift basin in the North China Craton. Since the deposition of the Permo-Carboniferous hydrocarbon source rock, the basin has undergone many tectonic events. Th... The Bohai Bay Basin is a Mesozoic subsidence and Cenozoic rift basin in the North China Craton. Since the deposition of the Permo-Carboniferous hydrocarbon source rock, the basin has undergone many tectonic events. The source rocks have undergone non-uniform uplift, twisting, deep burying, and magmatism and that led to an interrupted or stepwise during the evolution of hydrocarbon source rocks. We have investigated the Permo-Carboniferous hydrocarbon source rocks history of burying, heating, and hydrocarbon generation, not only on the basis of tectonic disturbance and deeply buried but also with new studies on apatite fission track analysis, fluid inclusion measurements, and the application of the numerical simulation of EASY % Ro. The heating temperature of the source rocks continued to rise from the Indosinian to Himalayan stage and reached a maximum at the Late Himalayan. This led to the stepwise increases during organic maturation and multiple stages of hydrocarbon generation. The study delineated the tectonic stages, the intensity of hydrocarbon generation and spatial and temporal distribution of hydrocarbon generations. The hydrocarbon generation occurred during the Indosinian, Yanshanian, and particularly Late Himalayan. The hydrocarbon generation during the late Himalayan stage is the most important one for the Permo-Carboniferous source rocks of the Bohai Bay Basin in China. 展开更多
关键词 Permo-Carboniferous source rocks burial history thermal history hydrocarbon generation EASY % Ro numerical simulation Bohai Bay basin
下载PDF
Hydrocarbon generation from Carboniferous-Permian coaly source rocks in the Huanghua depression under different geological processes 被引量:5
7
作者 Jin-Jun Xu Qiang Jin 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1540-1555,共16页
Natural gas and condensate derived from Carboniferous-Permian(C-P)coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin(east China)have important implications for the potential exploration of C-P... Natural gas and condensate derived from Carboniferous-Permian(C-P)coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin(east China)have important implications for the potential exploration of C-P coaly source rocks.This study analyzed the secondary,tertiary,and dynamic characteristics of hydrocarbon generation in order to predict the hydrocarbon potentials of different exploration areas in the Dagang Oilfield.The results indicated that C-P oil and gas were generated from coaly source rocks by secondary or tertiary hydrocarbon generation and characterized by notably different hydrocarbon products and generation dynamics.Secondary hydrocarbon generation was completed when the maturity reached vitrinite reflectance(Ro)of 0.7%-0.9%before uplift prior to the Eocene.Tertiary hydrocarbon generation from the source rocks was limited in deep buried sags in the Oligocene,where the products consisted of light oil and gas.The activation energies for secondary and tertiary hydrocarbon generation were 260-280 kJ/mol and 300-330 kJ/mol,respectively,indicating that each instance of hydrocarbon generation required higher temperature or deeper burial than the previous instance.Locations with secondary or tertiary hydrocarbon generation from C-P coaly source rocks were interpreted as potential oil and gas exploration regions. 展开更多
关键词 hydrocarbon generation Thermal simulation Coaly source rocks CARBONIFEROUS-PERMIAN Huanghua depression
下载PDF
Hydrocarbon Generation Kinetic Characteristics from Different Types of Organic Matter 被引量:4
8
作者 WANG Min LU Shuangfang +4 位作者 XUE Haitao WANG Weiming LIU Min DONG Qi WANG Guihua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第3期702-711,共10页
In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.Fr... In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.From the experimental results,the curve of hydrocarbon generation rate vs.temperature can be easily obtained,which usually can be used to optimize kinetic parameters (A,E,F)of the hydrocarbon generation model.In this paper,the parallel first-order reaction with a single frequency factor model is selected to describe the hydrocarbon generation kinetic characteristics. The hydrocarbon generation kinetic parameters reveal that the types of compound structures and chemical bonds of the lacustrine fades typeⅠOM are relatively homogeneous,with one dominating activation energy.The types of chemical bonds of the lacustrine facies typeⅡ2 OM and the terrestrial facies typeⅢOM are relative complex,with a broad activation energy distribution,and the reaction fraction of the preponderant activation energy drops with the decrease of hydrogen index.The impact of the activation energy distribution spaces on the geological extrapolation of kinetic parameters is also investigated.The results show that it has little effect on the hydrocarbon transformation ratio(TR)and therefore,the parallel first-order reaction model with proper number of activation energies can be better used to describe the hydrocarbon generation process.The geological extrapolation results of 18 samples of kinetic parameters show that the distribution range of the hydrocarbon generation rate of the typeⅠOM is relatively narrow and the hydrocarbon generation curve is smooth.In comparison,the distribution range of the hydrocarbon generation for typeⅢand typeⅡ2-ⅢOM are quite wide,and the hydrocarbon generation curves have fluctuation phenomena.The distribution range of the hydrocarbon generation rate and the fluctuation phenomena are related to the kinetic parameters of OM;the narrower the activation energy distribution,the narrower the hydrocarbon generation rate distribution,and the smoother the hydrocarbon generation curve,and vice versa. 展开更多
关键词 kinetic characteristics simulation experiment type of organic matter activation energy hydrocarbon generation rate
下载PDF
Thermal Evolution of Organic Matter and Secondary Hydrocarbon Generation from Upper Paleozoic Coal Deposits in Northern China 被引量:8
9
作者 ZHENG Li-quan LI Xian-qing +3 位作者 LU Xia ZHONG Ning-ning HUANG Xiao-yan ZHOU Qiang 《Journal of China University of Mining and Technology》 EI 2007年第4期526-533,共8页
The metamorphism and hydrocarbon generation from the Upper Paleozoic coal-bearing strata in Northern China have been widely studied by Chinese geologists since the 1990s. Based on a large amount of data of Ro values,c... The metamorphism and hydrocarbon generation from the Upper Paleozoic coal-bearing strata in Northern China have been widely studied by Chinese geologists since the 1990s. Based on a large amount of data of Ro values,combined with geological background,we have systematically analyzed the thermal evolutionary characteristics of or-ganic matter and the stages of hydrocarbon generation from the Permo-Carboniferous coal deposits and discussed the condition of secondary hydrocarbon generation. The distribution range of secondary hydrocarbon generation in North-ern China is thus determined. It is shown that the coal ranks of the Upper Paleozoic coal deposits are higher in the southern and western belts than those in the northern and eastern belts. Really significant secondary hydrocarbon gen-eration is mainly related to the thermal evolution of organic matter during the Himalayan Period. Profitable areas for secondary hydrocarbon generation should be buried at 3000-4000 m up to the present. Maturity of the Permo-Carbon-iferous source rocks is not very high. It is suggested that the Bohai Bay depression is favourable for secondary hydro-carbon generation and has good oil and gas prospects. 展开更多
关键词 coal deposits thermal evolution secondary hydrocarbon generation Upper Paleozoic Northern China
下载PDF
Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics:A case study of the Dongpu Depression,Bohai Bay Basin,China 被引量:3
10
作者 Mei-Hua Yang Yin-Hui Zuo +3 位作者 Kang-Nan Yan Yong-Shui Zhou Yun-Xian Zhang Cheng-Fu Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期472-485,共14页
With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify ... With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify the hydrocarbon generation mode and hydrocarbon generation histories in deep formations.In this study,a gold tube-autoclave closed system was used to simulate the hydrocarbon generation processes and establish the hydrocarbon generation mode of different types of kerogen.Then,constrained by the thermal history and hydrocarbon generation kinetics,hydrocarbon generation histories were modeled.The results show that hydrocarbon generation evolution can be divided into five stages,and the maturity of each stage is different.The hydrocarbon generation history of the source rocks of the Shahejie 3 Formation mainly dates from the early depositional period of the Shahejie 1 Formation to the middle depositional period of the Dongying Formation.Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics is more in line with actual geological conditions.Moreover,this research can provide important hydrocarbon generation parameters for deep oil and gas exploration and exploitation of the Shahejie 3 Formation in the Dongpu Depression. 展开更多
关键词 Dongpu depression Thermal history hydrocarbon generation kinetics hydrocarbon generation mode hydrocarbon generation history
下载PDF
Hydrocarbon Generation and Expulsion of the Upper Triassic T3x5Source Rocks in the Western Sichuan Depression: Assessment for Unconventional Natural Gas 被引量:3
11
作者 GUO Yingchun SONG Yan +3 位作者 PANG Xiongqi WANG Youwei YANG Keming LI Boyuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期175-186,共12页
Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in ... Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3xs) in the Western Sichuan Basin (WSD) are currently regarded as the most prolific emerging unconventional gas plays in China. This study conducted a conventional evaluation of T3x5 source rocks in the WSD, and investigated their hydrocarbon generation and expulsion characteristics, including intensity, efficiency and amount. The results show that, the T3x5 source rocks are thick (generally 〉200 m), and have a high total organic content (TOC), ranging from 2.5 to 4.5 wt%. It is thus indivative of a great hydrocarbon generation potential when they underwent high thermal evolution (Ro〉1.2%) in the area. In addition, an improved method of hydrocarbon generation potential is applied, indicating that the source rocks reached a hydrocarbon expulsion threshold with vitrinite reflectance (Ro) reaching 1.06%. and that the comprehensive hydrocarbon expulsion efficiency is about 60%. The amount of hydrocarbon generation and expulsion from Tax5 source rocks is 3.14x10^10 t and 1.86x10^10 t, respectively, with a residual amount of 1.28x10^10t within them. Continuous-type tight-sand gas is predicted to have developed in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration; the Jurassic sandstone reservoirs are tight, and the gas expelled from the T3xs source rocks migrates for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3x10s t. Geological resources of shale gas are up to 1.05x10TM t. Small differences between the amounts calculated by the volumetric method and those obtained by hydrocarbon generation potential method may be due to other gas accumulations present within interbedded sands associated with gas shales. 展开更多
关键词 source rocks evaluation hydrocarbon generation and expulsion tight-sand gas shale gas resource assessment Upper Triassic Western Sichuan Depression
下载PDF
Study on the relationship between hydrocarbon generation and pore evolution in continental shale from the Ordos Basin,China 被引量:3
12
作者 Ji-Yuan Wang Shao-Bin Guo 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1305-1322,共18页
The relationship between hydrocarbon generation and the evolution of shale pore structure and its heterogeneity of continental shale from the Ordos Basin,China was quantitatively studied based on thermal simulation ex... The relationship between hydrocarbon generation and the evolution of shale pore structure and its heterogeneity of continental shale from the Ordos Basin,China was quantitatively studied based on thermal simulation experiment,mercury injection capillary pressure(MICP),gas adsorption,vitrinite reflectance(R_(o))analysis,and hydrocarbon generation test combined with Frenkel-Halsey-Hill(FHH)fractal model.The result shows that the pore volume(PV)and specific surface area(SSA)of pores with different pore sizes show a trend of decreasing first and then increasing as the maturity increases in general,R_(o)>1.59%is initially defined as a favorable stage for pore development in continental shale.Hydrocarbon generation has different effects on pore heterogeneity of different scales.For the N_(2)adsorption,the roughness of small pore surface(D_(1))decreases in the oil window;the complexity of large pore structure(D_(2))increases in the oil window but decreases in the gas window.For the MICP,the heterogeneity of small pore(D_(1))increases in the oil window and increases first and then decreases in the gas window;D_(2)remains basically constant during the whole stage and is close to 3,indicating that the heterogeneity of large pores is extremely strong and is not affected by hydrocarbon generation. 展开更多
关键词 SHALE hydrocarbon generation Pore evolution Fractal dimension
下载PDF
Diversified roles of mineral transformation in controlling hydrocarbon generation process,mechanism,and pattern 被引量:3
13
作者 Jiazong Du Jingong Cai +1 位作者 Tianzhu Lei Yingli Li 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期725-736,共12页
Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the... Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the effects of the different mineral properties on hydrocarbon generation process and mechanism during mineral transformation.In this way,pyrolysis experiments with smectite-octadecanoic acid complexes(Sm-OA and Ex-Sm-OA)were conducted to analyze correlation of mineralogy and pyrolysis behaviors.Based on organicmineral interaction,hydrocarbon generation process was divided into three phases.At 200–300℃,collapse of smectite led to desorption of OM,resulting in high yield of resin and slight increase in saturates.Subsequently,enhanced smectite illitization at 350–450℃was accompanied with large amounts of saturates and a mere gaseous hydrocarbon.Featured by neoformed plagioclase,ankerite,and illite,500C saw plenty of asphaltene and methane-rich gaseous hydrocarbons,revealing cracking reactions of OM.Noteworthy is that saturated and gaseous hydrocarbons in Ex-Sm-OA were considerably more than that in Sm-OA during second and third phases.Quantitative calculation of hydrogen revealed organic hydrogen provided by cross-linking of OM could not balance hydrogen consumed by cracking reactions,but supply of inorganic hydrogen ensured cracking could readily occur and consequently greatly promoted hydrocarbon generation.Further investigating characteristics of mineralogy and pyrolytic products,as well as effects of solid acidity on hydrocarbon generation,we concluded desorption of OM and decarboxylation promoted by Lewis acid were dominated at 200–300C,resulting in lowdegree hydrocarbon generation.While high yield of saturated and gaseous hydrocarbons in second and third phases,together with occurrence of ankerite,indicated predominance of decarboxylation and hydrogenation promoted by Lewis and Brønsted acid,respectively.Variations in organic-mineral interactions indicated(1)the controls of mineral transformation on hydrocarbon generation process and mechanism include desorption,decarboxylation,and hydrogenation reactions;(2)clay minerals acted as reactants evolving together with OM rather than catalysts.These findings are profoundly significant for understanding the hydrocarbon generation mechanisms,organic-inorganic interactions,and carbon cycle. 展开更多
关键词 Organo-clay complex Pyrolysis Smectite illitization hydrocarbon generation mechanism
下载PDF
Geothermal Regime,Thermal History and Hydrocarbon Generation Types of Sedimentary Basins in the Continental Area of China 被引量:2
14
作者 QiuNansheng JamesPuckette +1 位作者 JinZhijun WangJiyang 《Petroleum Science》 SCIE CAS CSCD 2005年第2期1-11,共11页
The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generatio... The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins. 展开更多
关键词 Geothermal regime thermal history hydrocarbon generation Easy%Ro apatite fission track sedimentary basin
下载PDF
Differential Thermal Regimes of the Tarim and Sichuan Basins in China:Implications for Hydrocarbon Generation and Conservation 被引量:2
15
作者 CHANG Jian LI Dan +5 位作者 QIU Nansheng ZHU Chuanqing ZHONG Ningning FENG Qianqian ZHANG Haizu WANG Xiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1308-1322,共15页
The uncertainty surrounding the thermal regimes of the ultra-deep strata in the Tarim and Sichuan basins,China,is unfavorable for further hydrocarbon exploration.This study summarizes and contrasts the present-day and... The uncertainty surrounding the thermal regimes of the ultra-deep strata in the Tarim and Sichuan basins,China,is unfavorable for further hydrocarbon exploration.This study summarizes and contrasts the present-day and paleo heat flow,geothermal gradient and deep formation temperatures of the Tarim and Sichuan basins.The average heat flow of the Tarim and Sichuan basins are 42.5±7.6 mW/m^(2)and 53.8±7.6 mW/m^(2),respectively,reflecting the characteristics of’cold’and’warm’basins.The geothermal gradient with unified depths of 0-5,000 m,0-6,000 m and 0-7,000 m in the Tarim Basin are 21.6±2.9℃/km,20.5±2.8℃/km and 19.6±2.8℃/km,respectively,while the geothermal gradient with unified depths of 0-5,000 m,0-6,000 m and 0-7,000 m in the Sichuan Basin are 21.9±2.3℃/km,22.1±2.5℃/km and23.3±2.4℃/km respectively.The differential change of the geothermal gradient between the Tarim and Sichuan basins with depth probably results from the rock thermal conductivity and heat production rate.The formation temperatures at depths of 6,000 m,7,000 m,8,000 m,9,000 m and 10,000 m in the Tarim Basin are 80℃-190℃,90℃-220℃,100℃-230℃,110℃-240℃and 120℃-250℃,respectively,while the formation temperatures at depths of 6,000 m,7,000 m,8,000 m and 9,000 m in the Sichuan Basin are 120℃-200℃,140℃-210℃,160℃-260℃and 180℃-280℃,respectively.The horizontal distribution pattern of the ultra-deep formation temperatures in the Tarim and Sichuan basins is mainly affected by the basement relief,fault activity and hydrothermal upwelling.The thermal modeling revealed that the paleo-heat flow in the interior of the Tarim Basin decreased since the early Cambrian with an early Permian abrupt peak,while that in the Sichuan Basin experienced three stages of steady state from Cambrian to early Permian,rapidly rising at the end of the early Permian and declining since the late Permian.The thermal regime of the Sichuan Basin was always higher than that of the Tarim Basin,which results in differential oil and gas generation and conservation in the ultra-deep ancient strata.This study not only promotes theoretical development in the exploration of ultra-deep geothermal fields,but also plays an important role in determining the maturation phase of the ultra-deep source rocks and the occurrence state of hydrocarbons in the Tarim and Sichuan basins. 展开更多
关键词 ultra-deep strata heat flow geothermal gradient formation temperature hydrocarbon generation and conservation Sichuan Basin Tarim Basin
下载PDF
Organic petrology and hydrocarbon generation of potential source rocks in Permian formation of Junggar Basin,Northwest in China 被引量:2
16
作者 秦黎明 张枝焕 《Journal of Central South University》 SCIE EI CAS 2013年第6期1693-1702,共10页
From the outcrops in the Yaomoshan and Hongyanchi sections, oil shales, deep dark mudstones or black mudstones with better organic richness were found. Through the analysis of the samples in the organic petrology meth... From the outcrops in the Yaomoshan and Hongyanchi sections, oil shales, deep dark mudstones or black mudstones with better organic richness were found. Through the analysis of the samples in the organic petrology method, the microscope features of the sedimentary organic matter were studied. The results indicate that three types of kerogens present in the measured samples. Kerogen type I consists of the laminate algainite, abundant sporinite and only little content of cutinite, which can mainly generate oil. The generation hydrocarbon components of the type II kerogen are dominated by the sporinite, cutinite and little the exinite debris. The type III kerogen is comprised of the sporinite and debris of the exinite with some components of gas generation. Through the analysis of the experiments, the organic kerogen of the Lucaogou formation is mostly comprised of the type I, partially type II, and particularly type III. In Hongyanchi formation, the organic type is mixed by the types II and III. The plot of the ($1+$2) or TOC value and the content of exinite show two trends. From the evolution of burial and the Permian source rocks in Changji Depression, the Permian formation source rock has ended the generation of hydrocarbon. A significant difference in constituents of the organic macerals among three kerogens in these samples leads to the distinction of the potential hydrocarbon generation. The Lucaogou formation for kerogen type I has better potential hydrocarbon generation. It can reach the oil peak with Ro ratio Of 0.9%. For the kerogen II, the oil peak of the source rocks comes late with the Ro ratio of 1.0% with less quantity of the generation hydrocarbon than the kerogen I. For type III, it can mainly generate gas and reach the gas peak with the Ro ratio of 1.3%. In a word, the Lucaogou formation and Hongyanchi formation source rocks with high organic richness in Permian source rocks have well exploration prospects. 展开更多
关键词 organic macerals hydrocarbon generation potential Permian source rocks southern Junggar Basin
下载PDF
Three Episodes of Hydrocarbon Generation and Accumulation of Marine Carbonate Strata in Eastern Sichuan Basin,China 被引量:1
17
作者 QIN Jianzhong MENG Qingqiang FU Xiaodong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期643-654,共12页
It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperatur... It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatures of 177℃ to 220℃. They could be cracked into dry gas (methane), and the same with the source rocks of the Permian and O3w-S1l because they all reached the pyrolysis stage under such conditions. Consequently, the present natural gas (methane) reservoirs were developed. 展开更多
关键词 northeastern Sichuan Basin Puguang Gas Field MARINE carbonate strata hydrocarbon generation and accumulation
下载PDF
Effect of Uncertainty of the Pre-Exponential Factor on Kinetic Parameters of Hydrocarbon Generation from Organic Matter and its Geological Applications 被引量:1
18
作者 WANG Min LU Shuangfang +1 位作者 XUE Haitao YU Zhanqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期211-218,共8页
The source rock sample of the Shahejie Formation (upper Es4) in Jiyang Sag was pyrolyzed under open system with the Rock-Eval-lI apparatus, and then kinetic model parameters were calibrated for investigating the eff... The source rock sample of the Shahejie Formation (upper Es4) in Jiyang Sag was pyrolyzed under open system with the Rock-Eval-lI apparatus, and then kinetic model parameters were calibrated for investigating the effect of uncertainty of pre-exponential factors on kinetic parameters and geological applications, where the parallel first-order reaction rate model with an average pre- exponential factor and discrete distribution activity energies was used. The results indicate that when the pre-exponential factor changes from low to high, an extreme value for residual errors occurs. And with the increasing pre-exponential factor, the distribution shape of activation energies are nearly the same, but the values of activation energies move higher integrally, and the average activation energy increases about 12 kJ/mol for every 10-fold of the pre-exponential factors. Extrapolating the geological heating rate of 3.3 ~C/Ma, the results show that with the increases in pre-exponential factor, the geological temperature corresponding to TRo.5 (transforming ratio of hydrocarbon generation is 50%) increases gradually, and the additional temperature gradually decreases. Combined with geochemical data of source rock, the kinetic parameters with different pre-exponentia[ factors are used to calculate the transformation ratio of hydrocarbon generation, and the result indicates that kinetic parameters corresponding to the better optimized pre-exponential factor are more suitable. It is suggested that the risk assessment of hydrocarbon generation kinetic parameters should be enhanced when using the kinetic method to appraise the oil-gas resources. Meantime, the application result of different kinetic parameters should be verified with geological and geochemical data of source rock in the target area; therefore, the most suitable kinetic parameters for target can be obtained. 展开更多
关键词 Pre-exponential factor activation energy UNCERTAINTY hydrocarbon generation kinetics geological application
下载PDF
Contrasting on Hydrocarbon Generation Modeland Characteristics of Pyrolysis of Modern Aquatic Plant(Gloeocapsa) vs MarineAnimal(Mantis Shrimp)
19
作者 Liu Dameng Department of Geology and Energy Resources, China University of Geosciences, Beijing 100083 Jin Kuili China University of Mining and Technology, Beijing 100083 《Journal of Earth Science》 SCIE CAS CSCD 2000年第1期30-38,共9页
A hydrocarbon model of the modern aquatic plant Gloeocapsa and the aquatic animal mantis shrimp was found in thermal simulating experiment. The results show that the modern aquatic plant Gloeocapsa is characterized by... A hydrocarbon model of the modern aquatic plant Gloeocapsa and the aquatic animal mantis shrimp was found in thermal simulating experiment. The results show that the modern aquatic plant Gloeocapsa is characterized by late generation, late termination and a long duration of oil generation, while the aquatic animal mantis shrimp is characterized by early generation, early termination and a short duration of oil generation. The nalkanes from Gloeocapsa and mantis shrimp are characterized by peak carbon C 15 -C 17 . With increasing thermal simulating temperature, the peak carbon changes from C 17 to C 15 , and the odd-even predominance of nalkanes becomes less clear. The products from Gloeocapsa contain abundant phenanthrene and naphthalene compounds, and even a little retene, while those from mantis shrimp are dominated by naphthalene compounds, and are poor in phenanthrene compounds. Gloeocapsa and mantis shrimp are rich in C 27 sterane, relatively rich in tricyclic terpanes (C 19 -C 29 ) and hopanes (C 27 -C 35 ), poor in 5α,14β,17β sterane, and coprostane does not disappear until 450 ℃. The tricyclic terpanes in Gloeocapsa are characterized by peak carbon C 23 and C 23 >C 21 , and in mantis shrimp by C 21 and C 21 >C 23 . The content of pregnanes is very low at low temperature of thermal simulation, while above 360 ℃, high levels of pregnane series compounds and even degraded C 25 and C 26 steranes occur in thermal simulation products. 展开更多
关键词 Gloeocapsa mantis shrimp hydrocarbon generation thermal simulation molecular geochemistry.
下载PDF
Process and Mechanisms of Deep Fluid Effects on Hydrocarbon Generation and Pore Space in Shale:A Case Study from the Mesoproterozoic Xiamaling Formation in the Zhaojiashan Section
20
作者 MENG Qingqiang PANG Qian +4 位作者 HU Guang JIN Zhijun ZHU Dongya LIU Jiayi ZHANG Chuanwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1342-1352,共11页
Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reserv... Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reservoirs.This study evaluates hydrocarbon generation and analyzed the evolution of shale storage space in the third member of the Xiamaling Formation in the Zhaojiashan section,Hebei Province,based on experimental data such as TOC,SEM,VRo,low-temperature N_(2)adsorption and high-pressure mercury injection.The results show that the dyke intrusion reduced the shale TOC content drastically―by up to 77%―and also induced instantaneous hydrocarbon generation over a range about 1.4 times the thickness of the intrusion.Furthermore,the dyke intrusion might transform organic pores in surrounding shales into inorganic pores.There were two shale porosity peaks:one appeared when VRo=2.0%,caused by the increase of organic pores as thermal maturity increased,the other occurred when the VRo value was between 3%and 4%,caused by the increase of inorganic mineral pores.It can be concluded that dyke intrusion can be an effective tool with which to study how deep fluid affects instantaneous hydrocarbon generation and pore space in shale. 展开更多
关键词 deep fluid hydrocarbon generation thermal effect PORE Xiamaling Formation
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部