Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among t...Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (1S,3R)-3-amino-2,2,3- trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.展开更多
A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. ...A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. Con- ventional polyelectrolyte multilayers of PAH/PVS are usually fabricated through electrostatic layer-by-layer(LbL) assembly, resulting in poor stability, especially in basic solutions, which leads to the urgent demand for converting weak electrostatic interactions into covalent bonds to enhance the stability of the multilayers. This stability problem has been ultimately addressed by post-infiltrating a photosensitive cross-linking agent, 4,4'-diazostilbene-2,2'- disulfonie acid disodium salt(DAS), into the LbL assembled films to initiate the photochemical reaction to cross-link the multilayers. The obviously improved stability of the photo-cross-linked multilayers was demonstrated through experiments with basic solution treatments. Compared to the complete decomposition of uncross-linked multilayers in basic solution, over 74.4% of the covalently cross-linked multilayers were retained under the same conditions, even after a longer duration of basic solution treatment.展开更多
基金This work was funded by the National Natural Science Foundation of China (No. 20301009)
文摘Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (1S,3R)-3-amino-2,2,3- trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.
基金Supported by the National Natural Science Foundation of China(Nos.51372125, 51302010) and the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130010120009).
文摘A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. Con- ventional polyelectrolyte multilayers of PAH/PVS are usually fabricated through electrostatic layer-by-layer(LbL) assembly, resulting in poor stability, especially in basic solutions, which leads to the urgent demand for converting weak electrostatic interactions into covalent bonds to enhance the stability of the multilayers. This stability problem has been ultimately addressed by post-infiltrating a photosensitive cross-linking agent, 4,4'-diazostilbene-2,2'- disulfonie acid disodium salt(DAS), into the LbL assembled films to initiate the photochemical reaction to cross-link the multilayers. The obviously improved stability of the photo-cross-linked multilayers was demonstrated through experiments with basic solution treatments. Compared to the complete decomposition of uncross-linked multilayers in basic solution, over 74.4% of the covalently cross-linked multilayers were retained under the same conditions, even after a longer duration of basic solution treatment.