The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental re...The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.展开更多
This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At ...This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L^-1(Na^+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L^-1.h^-1, 28.04-28.97ml·g^-1, 7.52-7.83ml·g^-1.h^-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g^-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.展开更多
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ...Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.展开更多
To investigate the impact of limestone powder on the chloride ion concentration coefficient of cement pastes,various techniques such as scanning electron microscopy(SEM),X-ray diffraction(XRD),thermogravimetric analys...To investigate the impact of limestone powder on the chloride ion concentration coefficient of cement pastes,various techniques such as scanning electron microscopy(SEM),X-ray diffraction(XRD),thermogravimetric analysis(TGA),and mercury-porosimetry(MIP)were employed in this paper.The findings demonstrate that the creation of Friedel's salt is inversely associated with the addition of limestone powder,that is,Friedel's salt production is lessened by adding more limestone powder,however,the coefficient of chloride ion concentration initially decreased and then increased again,as does the porosity,and most likely the pore size as well.The specific surface area of limestone powder has increased,and the content of Friedel’s salt increased first and then decreased.However,the shifting trend of Friedel's salt and chloride ion concentration coefficient is in direct opposition,and the pore structure was therefore significantly enhanced.The results of this study offer robust theoretical backing for the inclusion of limestone powder in concrete and provide a positive assessment of its potential applications.展开更多
This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L-1(Na+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the op...This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L-1(Na+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the opti- mum sodium ion concentration [1000—2000mg·L-1(Na+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6— 413.1mg·L-1·h-1, 28.04—28.97ml·g-1, 7.52—7.83ml·g-1·h-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.展开更多
1.IntroductionSo far there are few people who studythe relationship between the criticalhydrogen concentration and the stress forhvdrogen induced cracking (CCHIC)quantitatively.Several researchers have cal-culated the...1.IntroductionSo far there are few people who studythe relationship between the criticalhydrogen concentration and the stress forhvdrogen induced cracking (CCHIC)quantitatively.Several researchers have cal-culated the CCHIC of steels under no stressby means of H permeation method,but no展开更多
In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mai...In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.展开更多
In international thermonuclear experimental reactor (ITER), one of major concerns is an in-vessel tritium inventory from a point of safety. It is believed that the carbon-tritium co-deposited film produced by the er...In international thermonuclear experimental reactor (ITER), one of major concerns is an in-vessel tritium inventory from a point of safety. It is believed that the carbon-tritium co-deposited film produced by the erosion of carbon diverter walls has a high tritium concentration. However, no systematic evaluation for the tritium concentration has been conducted yet. In the present study, the carbon-hydrogen co-deposited films were prepared at the wall of pumping duct in Local Island Divertor experiments of LHD, in order to evaluate the tritium concentration of the co-deposited films produced in ITER. The hydrogen concentration was obtained by measuring the amount of retained hydrogen in the film and the mass density of the film. The hydrogen concentration of the co-deposited carbon film at the wall not facing to the plasma with a low temperature was extremely high, 1.3 in the atomic ratio of H/C. This value is triple times higher than the previous value obtained so far. The crystal structure of the co-deposited carbon film observed by Raman spectroscopy showed very unique structure (polymeric aC:H), which is well consistent with the high hydrogen concentration. The present study suggests that the tritium concentration of the co-deposited film in ITER depends on the wall position and becomes quite high as high as T/C-0.65. The results obtained contribute to evaluate the in-vessel tritium inventory owing to the co-deposited carbon films.展开更多
Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions...Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.展开更多
A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrog...The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrogen concentration profile of ion nitrided layers have been deduced with profile simulating method.They are C_=C_(min)^+(P_4)/(ξ_1-x)+(P_5)/(ξ_(10)~2)(ξ_1-x)~2 C_(γ′)=C_(min)^(γ′)+(P_1)/(ξ_(21))(ξ_2-x)+(P_2)/(ξ_(21)~2)(ξ_2-x)~2 C_α=C_(min)~α+(C_(33))/(C_(33))/(ξ_(32))(ξ_3-x)~3 Using these models,the kinetics of layer growth and the nitrogen concentration profile of ion nitrided layers were sinulated on Apple-Ⅱ computer.Results show that the simulated curves coincide quite well with the experimental data.展开更多
Y2O3:Er^3+ ultrafine phosphors with a varying Yb^3+ ion concentration were prepared by a urea homogeneous precipitation method. The results of XRD show that all the samples are of a pure cubic structure and the ave...Y2O3:Er^3+ ultrafine phosphors with a varying Yb^3+ ion concentration were prepared by a urea homogeneous precipitation method. The results of XRD show that all the samples are of a pure cubic structure and the average crystallite sizes can be calculated as 45, 34, and 28 nm for Y2O3:Er^3+ ultrafine phosphors with Yb^3+ ion concentrations of 0, 10%, and 20%, respectively. The lattice constant and cell volume of the ultrafine phosphors decrease with enhancing Yb^3+ ion concentration. The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation. The strong green and red upconversion emission were observed, and attributed to the ^2H11/2→^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 →^4I15/2 transitions of Er^3+, respectively. The intensity of red emission increases with increasing Yb^3+ ion concentration. The effect of Yb^3+ ion concentration on the structures and upconversion luminescence mechanism were discussed.展开更多
Negative air ions(NAIs)benefit the mental and physical health of humans,but rapid urbanization can decrease the abundance of NAIs.Quantifying the spatial and seasonal distribution of NAIs and determining the factors t...Negative air ions(NAIs)benefit the mental and physical health of humans,but rapid urbanization can decrease the abundance of NAIs.Quantifying the spatial and seasonal distribution of NAIs and determining the factors that infl uence the concentration during urbanization is thus essential.In the present study of a typical developing urban district in southern China,negative air ion concentrations(NAICs)in 60 forests sites and 30 urban green spaces were quantifi ed on seven consecutive days in each of the four seasons.Large seasonal variations in NAIC were revealed in forests and urban green spaces with trough values in summer.NAIC progressively decreased from forests to urban green spaces and was infl uenced by local land morphology,vegetation characteristics,and climatic factors.The vast,heavily vegetated northeastern region was the richest area for NAIs,whereas the narrow central region(urbanized area)was the poorest,implying dramatic impacts of urbanization on the spatial distribution of NAIs.The relationship between air temperature and NAIC was better fi tted with a quadratic equation than a linear equation.Moreover,the NAIC was more sensitive to local morphology in urban green spaces than in urban forests,indicating the vulnerability of NAIs in urbanized areas.Therefore,the appropriate design of local urban morphology is critical.展开更多
A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution has been developed based on the ion and molecule coexistence theory,and veri...A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution has been developed based on the ion and molecule coexistence theory,and verified in the NaCl-KCl-H2O ternary system at 298.15 K. To compare the difference of the thermodynamic model in binary and ternary strong electrolyte aqueous solutions,the mass action concentrations of components in the NaCl-H2O binary strong electrolyte aqueous solution were also computed at 298.15K. A transformation coefficient was required to compare the calculated mass action concentration and reported activity because they were obtained at different standard states and concentration units. The results show that the transformation coefficients between calculated mass action concentrations and reported activities of the same components change in a very narrow range. The calculated mass action concentrations of components in the NaCl-H2O and NaCl-KCl-H2O systems are in good agreement with the reported activities. This indicates that the developed thermodynamic model can reflect the structural characteristics of solutions,and the mass action concentration also strictly follows the mass action law.展开更多
Objective To study the characterization apportionment of main ion concentrations of PM10 under the influence of trajectory wind direction in London. Methods PM10 samples from 1 May 1995 to 30 October 1995 of Oxford St...Objective To study the characterization apportionment of main ion concentrations of PM10 under the influence of trajectory wind direction in London. Methods PM10 samples from 1 May 1995 to 30 October 1995 of Oxford Street of Central London were collected, the metals and anions of which were measured using atomic absorption spectrometry (AAS) and ion chromatography (IC). Composite trajectories representative of the air mass arriving in London at the same period were calculated based on basic routine back trajectories from the British Atmospheric Data Centre (BADC). Results Concentration apportionments of main ions were similar when the trajectory was plotted back at 6 h, 12 h, and 24 h, some were obviously different. Mg, Ba, Pb, and Cu had similar peak apportionments at the area 180°-320°, but Zn and Ni at the area of 90°-270°, NO3^- and SO4^2- at the area of 100°-220°. Cl^- concentration peak apportionment was at the area of 220°-300°, which showed that Cl^- mainly came from the North Sea. Conclusion Trajectory wind direction has important effect on ion concentration apportionment of PM10 in London. The ions have similar concentration peak apportionments or their correlation coefficients are statistically significant.展开更多
Corrosion attack of aluminium and magnesium based alloys is a major issue worldwide.The corrosion degradation of an uncoated and atmospheric plasma sprayed alumina(APS)coatings on AZ31B magnesium alloy was investigate...Corrosion attack of aluminium and magnesium based alloys is a major issue worldwide.The corrosion degradation of an uncoated and atmospheric plasma sprayed alumina(APS)coatings on AZ31B magnesium alloy was investigated using immersion corrosion test in NaCl solutions of different chloride ion concentrations viz.,0.01 M,0.2 M,0.6 M and 1 M.The corroded surface was characterized by an optical microscope and X-ray diffraction.The results showed that the corrosion deterioration of uncoated and coated samples were significantly influenced by chloride ion concentration.The uncoated magnesium and alumina coatings were found to offer a superior corrosion resistance in lower chloride ion concentration NaCl solutions(0.01 M and 0.2 M NaCl).On the other hand the coatings and Mg alloy substrate were found to be highly susceptible to localized damage,and could not provide an effective corrosion protection in solutions containing higher chloride concentrations(0.6 M and 1 M).It was found that the corrosion resistance of the ceramic coatings and base metal gets deteriorated with the increase in the chloride concentrations.展开更多
Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated...Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.展开更多
To exploit an effective adsorbent to separate hydrogen and methane, microporous titanium silicate molecular sieve NaETS-4 was synthesized and modified by strontium. The adsorption characteristics and diffusion behavio...To exploit an effective adsorbent to separate hydrogen and methane, microporous titanium silicate molecular sieve NaETS-4 was synthesized and modified by strontium. The adsorption characteristics and diffusion behaviors of the prepared titanosilicate molecular sieve were studied by concentration pulse chromatography. And the effects of ion-exchange and dehydration temperature on adsorbent structure and gas diffusion were also discussed. The results showed that the thermal stability and Henry's Law constants were enhanced and micropore diffusivity decreased after exchanging Na+ with Sr2+. With the increase of dehydration temperature, Henry's Law constant and micropore diffusivity of CI-I4 decreased in both NaETS-4 and SrETS-4. While for 1-12 in SrETS-4, the increase of Henry's Law constant and the decrease of diffusion rate can be attributed to the shrinks of pore diameter resulting from the relocation of Sr2+. Correspondingly, the kinetic selectivity of H2/CH4 reached 8.91 indicating its potentiality in separating H2 and CH4.展开更多
Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is ...Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes.Herein,taking a new potassium vanadate K0.486V2O5(KVO)cathode with large interlayer spacing(~0.95 nm)and high capacity as an example,we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte,but with no need to approach“water-in-salt”threshold.With the optimized moderate concentration of 15 m ZnCl2 electrolyte,the KVO exhibits the best cycling stability with ~95.02% capacity retention after 1400 cycles.We further design a novel sodium carboxymethyl cellulose(CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm^-1 for the first time and assemble a quasi-solid-state AZIB.This device is bendable with remarkable energy density(268.2 Wh kg^−1),excellent stability(97.35% after 2800 cycles),low self-discharge rate,and good environmental(temperature,pressure)suitability,and is capable of powering small electronics.The device also exhibits good electrochemical performance with high KVO mass loading(5 and 10 mg cm^-2).Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.展开更多
The effect of Er3+ ion concentration on transient and steady-state behavior in 45-nm Er3+ :YAG crystal is investigated. It is shown that by changing the signal field, the coherent field and the concentration of Er3...The effect of Er3+ ion concentration on transient and steady-state behavior in 45-nm Er3+ :YAG crystal is investigated. It is shown that by changing the signal field, the coherent field and the concentration of Er3+ ions in the crystal, the absorption, dispersion, and group index of the weak probe field can be adjusted. Also, it is found that the probe absorption occurs in the presence of population inversion and probe amplification is obtained in the absence of population inversion.展开更多
基金Sponsored by the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology(Grant No.2010DX06)the National High Technology Research and Development Program of China(Grant No.2006AA05Z109)the Harbin Science and Technology Bureau(Grant No.2009RFXXS004)
文摘The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.
基金Supported by the National Natural Science Foundation of China (No.20122203).
文摘This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L^-1(Na^+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L^-1.h^-1, 28.04-28.97ml·g^-1, 7.52-7.83ml·g^-1.h^-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g^-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.
基金supported by CNPC-CZU Innovation Alliancethe Research Start-Up Fund of Changzhou University.
文摘Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.
基金Funded by the National Natural Science Foundation of China(No.52008304)the Natural Science Foundation of Fujian Province(No.2023J05021)the Startup Foundation of Scientific Research by Fuzhou University(Nos.XRC-18016 and GXRC21060)。
文摘To investigate the impact of limestone powder on the chloride ion concentration coefficient of cement pastes,various techniques such as scanning electron microscopy(SEM),X-ray diffraction(XRD),thermogravimetric analysis(TGA),and mercury-porosimetry(MIP)were employed in this paper.The findings demonstrate that the creation of Friedel's salt is inversely associated with the addition of limestone powder,that is,Friedel's salt production is lessened by adding more limestone powder,however,the coefficient of chloride ion concentration initially decreased and then increased again,as does the porosity,and most likely the pore size as well.The specific surface area of limestone powder has increased,and the content of Friedel’s salt increased first and then decreased.However,the shifting trend of Friedel's salt and chloride ion concentration coefficient is in direct opposition,and the pore structure was therefore significantly enhanced.The results of this study offer robust theoretical backing for the inclusion of limestone powder in concrete and provide a positive assessment of its potential applications.
基金Supported by the National Natural Science Foundation of China (No.20122203).
文摘This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L-1(Na+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the opti- mum sodium ion concentration [1000—2000mg·L-1(Na+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6— 413.1mg·L-1·h-1, 28.04—28.97ml·g-1, 7.52—7.83ml·g-1·h-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.
文摘1.IntroductionSo far there are few people who studythe relationship between the criticalhydrogen concentration and the stress forhvdrogen induced cracking (CCHIC)quantitatively.Several researchers have cal-culated the CCHIC of steels under no stressby means of H permeation method,but no
文摘In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.
文摘In international thermonuclear experimental reactor (ITER), one of major concerns is an in-vessel tritium inventory from a point of safety. It is believed that the carbon-tritium co-deposited film produced by the erosion of carbon diverter walls has a high tritium concentration. However, no systematic evaluation for the tritium concentration has been conducted yet. In the present study, the carbon-hydrogen co-deposited films were prepared at the wall of pumping duct in Local Island Divertor experiments of LHD, in order to evaluate the tritium concentration of the co-deposited films produced in ITER. The hydrogen concentration was obtained by measuring the amount of retained hydrogen in the film and the mass density of the film. The hydrogen concentration of the co-deposited carbon film at the wall not facing to the plasma with a low temperature was extremely high, 1.3 in the atomic ratio of H/C. This value is triple times higher than the previous value obtained so far. The crystal structure of the co-deposited carbon film observed by Raman spectroscopy showed very unique structure (polymeric aC:H), which is well consistent with the high hydrogen concentration. The present study suggests that the tritium concentration of the co-deposited film in ITER depends on the wall position and becomes quite high as high as T/C-0.65. The results obtained contribute to evaluate the in-vessel tritium inventory owing to the co-deposited carbon films.
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject supported by Research Program of Excellent Scholars Studying Abroad of Ministry of Human Resources and Social Security,China
文摘Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
文摘The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrogen concentration profile of ion nitrided layers have been deduced with profile simulating method.They are C_=C_(min)^+(P_4)/(ξ_1-x)+(P_5)/(ξ_(10)~2)(ξ_1-x)~2 C_(γ′)=C_(min)^(γ′)+(P_1)/(ξ_(21))(ξ_2-x)+(P_2)/(ξ_(21)~2)(ξ_2-x)~2 C_α=C_(min)~α+(C_(33))/(C_(33))/(ξ_(32))(ξ_3-x)~3 Using these models,the kinetics of layer growth and the nitrogen concentration profile of ion nitrided layers were sinulated on Apple-Ⅱ computer.Results show that the simulated curves coincide quite well with the experimental data.
基金financially supported by the Foundation for Universities by the Educational Department of Liaoning Province, China (No. 05L337)
文摘Y2O3:Er^3+ ultrafine phosphors with a varying Yb^3+ ion concentration were prepared by a urea homogeneous precipitation method. The results of XRD show that all the samples are of a pure cubic structure and the average crystallite sizes can be calculated as 45, 34, and 28 nm for Y2O3:Er^3+ ultrafine phosphors with Yb^3+ ion concentrations of 0, 10%, and 20%, respectively. The lattice constant and cell volume of the ultrafine phosphors decrease with enhancing Yb^3+ ion concentration. The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation. The strong green and red upconversion emission were observed, and attributed to the ^2H11/2→^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 →^4I15/2 transitions of Er^3+, respectively. The intensity of red emission increases with increasing Yb^3+ ion concentration. The effect of Yb^3+ ion concentration on the structures and upconversion luminescence mechanism were discussed.
基金The authors acknowledge the volunteers who helped with the fi eld investigations.
文摘Negative air ions(NAIs)benefit the mental and physical health of humans,but rapid urbanization can decrease the abundance of NAIs.Quantifying the spatial and seasonal distribution of NAIs and determining the factors that infl uence the concentration during urbanization is thus essential.In the present study of a typical developing urban district in southern China,negative air ion concentrations(NAICs)in 60 forests sites and 30 urban green spaces were quantifi ed on seven consecutive days in each of the four seasons.Large seasonal variations in NAIC were revealed in forests and urban green spaces with trough values in summer.NAIC progressively decreased from forests to urban green spaces and was infl uenced by local land morphology,vegetation characteristics,and climatic factors.The vast,heavily vegetated northeastern region was the richest area for NAIs,whereas the narrow central region(urbanized area)was the poorest,implying dramatic impacts of urbanization on the spatial distribution of NAIs.The relationship between air temperature and NAIC was better fi tted with a quadratic equation than a linear equation.Moreover,the NAIC was more sensitive to local morphology in urban green spaces than in urban forests,indicating the vulnerability of NAIs in urbanized areas.Therefore,the appropriate design of local urban morphology is critical.
文摘A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution has been developed based on the ion and molecule coexistence theory,and verified in the NaCl-KCl-H2O ternary system at 298.15 K. To compare the difference of the thermodynamic model in binary and ternary strong electrolyte aqueous solutions,the mass action concentrations of components in the NaCl-H2O binary strong electrolyte aqueous solution were also computed at 298.15K. A transformation coefficient was required to compare the calculated mass action concentration and reported activity because they were obtained at different standard states and concentration units. The results show that the transformation coefficients between calculated mass action concentrations and reported activities of the same components change in a very narrow range. The calculated mass action concentrations of components in the NaCl-H2O and NaCl-KCl-H2O systems are in good agreement with the reported activities. This indicates that the developed thermodynamic model can reflect the structural characteristics of solutions,and the mass action concentration also strictly follows the mass action law.
基金This work was supported by China Scholarship Council.
文摘Objective To study the characterization apportionment of main ion concentrations of PM10 under the influence of trajectory wind direction in London. Methods PM10 samples from 1 May 1995 to 30 October 1995 of Oxford Street of Central London were collected, the metals and anions of which were measured using atomic absorption spectrometry (AAS) and ion chromatography (IC). Composite trajectories representative of the air mass arriving in London at the same period were calculated based on basic routine back trajectories from the British Atmospheric Data Centre (BADC). Results Concentration apportionments of main ions were similar when the trajectory was plotted back at 6 h, 12 h, and 24 h, some were obviously different. Mg, Ba, Pb, and Cu had similar peak apportionments at the area 180°-320°, but Zn and Ni at the area of 90°-270°, NO3^- and SO4^2- at the area of 100°-220°. Cl^- concentration peak apportionment was at the area of 220°-300°, which showed that Cl^- mainly came from the North Sea. Conclusion Trajectory wind direction has important effect on ion concentration apportionment of PM10 in London. The ions have similar concentration peak apportionments or their correlation coefficients are statistically significant.
文摘Corrosion attack of aluminium and magnesium based alloys is a major issue worldwide.The corrosion degradation of an uncoated and atmospheric plasma sprayed alumina(APS)coatings on AZ31B magnesium alloy was investigated using immersion corrosion test in NaCl solutions of different chloride ion concentrations viz.,0.01 M,0.2 M,0.6 M and 1 M.The corroded surface was characterized by an optical microscope and X-ray diffraction.The results showed that the corrosion deterioration of uncoated and coated samples were significantly influenced by chloride ion concentration.The uncoated magnesium and alumina coatings were found to offer a superior corrosion resistance in lower chloride ion concentration NaCl solutions(0.01 M and 0.2 M NaCl).On the other hand the coatings and Mg alloy substrate were found to be highly susceptible to localized damage,and could not provide an effective corrosion protection in solutions containing higher chloride concentrations(0.6 M and 1 M).It was found that the corrosion resistance of the ceramic coatings and base metal gets deteriorated with the increase in the chloride concentrations.
基金Project(2015BAB04B01)supported by the National Key Technology R&D Program of ChinaProject(FA2017029)supported by Science and Technology Program of Chongzuo,ChinaProject(CSUZC201811)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.
基金supported by Yunnan Natural Science Foundation(No.2010CD026)Kunming University of Science and Technology Science Foundation(No.kkz3201205022)+1 种基金Analysis and Testing Foundation of Kunming University of Science and Technology(20140805)the National Natural Science Foundation of China(No.21301079)
文摘To exploit an effective adsorbent to separate hydrogen and methane, microporous titanium silicate molecular sieve NaETS-4 was synthesized and modified by strontium. The adsorption characteristics and diffusion behaviors of the prepared titanosilicate molecular sieve were studied by concentration pulse chromatography. And the effects of ion-exchange and dehydration temperature on adsorbent structure and gas diffusion were also discussed. The results showed that the thermal stability and Henry's Law constants were enhanced and micropore diffusivity decreased after exchanging Na+ with Sr2+. With the increase of dehydration temperature, Henry's Law constant and micropore diffusivity of CI-I4 decreased in both NaETS-4 and SrETS-4. While for 1-12 in SrETS-4, the increase of Henry's Law constant and the decrease of diffusion rate can be attributed to the shrinks of pore diameter resulting from the relocation of Sr2+. Correspondingly, the kinetic selectivity of H2/CH4 reached 8.91 indicating its potentiality in separating H2 and CH4.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.51872104,51972257 and 51672205)the National Key R&D Program of China(Grant No.2016YFA0202602)the Natural Science Foundation of Hubei Province(2018CFB581).
文摘Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes.Herein,taking a new potassium vanadate K0.486V2O5(KVO)cathode with large interlayer spacing(~0.95 nm)and high capacity as an example,we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte,but with no need to approach“water-in-salt”threshold.With the optimized moderate concentration of 15 m ZnCl2 electrolyte,the KVO exhibits the best cycling stability with ~95.02% capacity retention after 1400 cycles.We further design a novel sodium carboxymethyl cellulose(CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm^-1 for the first time and assemble a quasi-solid-state AZIB.This device is bendable with remarkable energy density(268.2 Wh kg^−1),excellent stability(97.35% after 2800 cycles),low self-discharge rate,and good environmental(temperature,pressure)suitability,and is capable of powering small electronics.The device also exhibits good electrochemical performance with high KVO mass loading(5 and 10 mg cm^-2).Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.
文摘The effect of Er3+ ion concentration on transient and steady-state behavior in 45-nm Er3+ :YAG crystal is investigated. It is shown that by changing the signal field, the coherent field and the concentration of Er3+ ions in the crystal, the absorption, dispersion, and group index of the weak probe field can be adjusted. Also, it is found that the probe absorption occurs in the presence of population inversion and probe amplification is obtained in the absence of population inversion.