期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions 被引量:6
1
作者 Xiao-yan Zhang Ren-guo Song +2 位作者 Bin Sun Hai Lu Chao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期819-826,共8页
Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum al... Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration. 展开更多
关键词 aluminum alloys stress corrosion cracking susceptibility hydrogen embrittlement potential acid solutions alkaline solutions
下载PDF
INTERPHASE STRESS CORROSION CRACKING OF ALLOY Ti-24Al-11Nb IN METHANOL SOLUTION
2
作者 ZHANG Yue CHU Wuyang +1 位作者 XIAO Jimei(Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China) OUYANG Shixi YUAN Runzhang(State Key Laboratory for Synthesis and Processing of Advanced Materials.Wuhan University of Techn 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第2期121-128,共8页
For alloy Ti-24Al-11Nb,stress corrosion cracking(SCC) in methanol solution and hydrogen induced cracking(HIC) during dynamic charging at room temperature have been studied.Experiment has shown that the normalised thre... For alloy Ti-24Al-11Nb,stress corrosion cracking(SCC) in methanol solution and hydrogen induced cracking(HIC) during dynamic charging at room temperature have been studied.Experiment has shown that the normalised threshold stress intensities of SCC failure for various microstructures are KISCC/KC =0.53 0.69 and the threshold value for SCC arresting KISCC/ KIC=0.61-0.79.The threshold values of HIC during dynamic charging are close to that of SCC,but da/dt or fracture time of HIC is one to three orders of magnitude smaller or longer than that of SCC,respectively.The.fracture surface for HIC is also different from that for SCC.For the Ti-24Al-Nb alloy-methanol systein,a kind of inierphase SCC has been found For the microstructures resulting from furnace cooling,SCC initiated and propagated preferentially along theα2/βinterphase boundaries,displaying the microstructure on the fracture surface of SCC.However,there is no interphase SCC for the microstructure resulting from air cooling. 展开更多
关键词 Ti-24Al-11Nb hydrogen induced cracking interphase stress corrosion cracking METHANOL
下载PDF
Analysis of cracks origin behaviors during sulfide stress corrosion (SSC) in HSLA steel at different temperatures by electrochemical noise 被引量:2
3
作者 Xiao-hua Li Chen-xi Liu +3 位作者 Biao He Chuan-tao Lv Zhi-ming Gao Yong-chang Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第11期1836-1845,共10页
The sulfide stress corrosion(SSC)behaviors of the high strength low alloy steel at the different temperatures were investigated by the microstructural observation and electrochemical noise(EN)analysis.With the corrosi... The sulfide stress corrosion(SSC)behaviors of the high strength low alloy steel at the different temperatures were investigated by the microstructural observation and electrochemical noise(EN)analysis.With the corrosion temperature increasing from 20 to 40℃,SSC ruptured time is prolonged.The increase in corrosion temperature results in the decrease of the saturation solubility of H_(2)S in the solution and thus increases pH value of solution.The increase in corrosion temperature decreases the size of the holes and cracks in the corrosion product film on the surface of the sample,which is due to the formation of the dense FeS corrosion product film.The current kurtosis results indicate that the time for the first occurrence of crack initiation is postponed by the increase in the corrosion temperature.The standard deviation of current noise signals,current kurtosis,power spectral density and energy distribution plot results shows a great consistency,which suggests that EN analysis method can reflect SSC behaviors in real time. 展开更多
关键词 Sulfide stress cracking High strength low alloy(HSLA)steel Electrochemical noise corrosion temperature hydrogen sulfide corrosion products
原文传递
Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel 被引量:8
4
作者 Jing Li Xiuhua Gao +1 位作者 Linxiu Du Zhenguang Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1504-1512,共9页
Hydrogen induced cracking(HIC) behaviors of a high strength pipeline steel with three different microstructures, granular bainite & lath bainite(GB + LB), granular bainite & acicular ferrite(GB + AF), and qu... Hydrogen induced cracking(HIC) behaviors of a high strength pipeline steel with three different microstructures, granular bainite & lath bainite(GB + LB), granular bainite & acicular ferrite(GB + AF), and quasi-polygonal ferrite(QF), were studied by using corrosion experiment based on standard NACE TM0284. The HIC experiment was conducted in hydrogen sulfide(H_2S)-saturated solution. The experimental results show that the steel with GB + AF and QF microstructure present excellent corrosion resistance to HIC, whereas the phases of bainite lath and martensite/austenite in LB + GB microstructure are responsible for poor corrosion resistance. Compared with ferrite phase, the bainite microstructure exhibits higher strength and crack susceptibility of HIC. The AF + GB microstructure is believed to have the best combination of mechanical properties and resistance to HIC among the designed steels. 展开更多
关键词 Pipeline steel Microstructure hydrogen induced cracking (HIC) corrosion resistance
原文传递
In-situ physical/chemical cross-linked hydrogel electrolyte achieving ultra-stable zinc anode-electrolyte interface towards dendrite-free zinc ion battery
5
作者 Chen-Yang Li Jiang-Lin Wang +7 位作者 Dong-Ting Zhang Min-Peng Li Hao Chen Wei-Hai Yi Xin-Ying Ren Bao Liu Xue-Feng Lu Mao-Cheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS 2024年第10期342-351,I0007,共11页
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ... Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries. 展开更多
关键词 In-suit CPZ hydrogel electrolyte hydrogen evolution reaction and zinc corrosion Dendrites growth Zinc anode-electrolyte interface Zn ion batteries
下载PDF
SCC investigation of low alloy ultra-high strength steel 30CrMnSiNi2A in 3.5wt% NaCl solution by slow strain rate technique 被引量:3
6
作者 Liu Jianhua Guo Qiang +1 位作者 Yu Mei Li Songmei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1327-1333,共7页
To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow str... To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique(SSRT) with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 · 10 5s 1to 5 · 10 7s 1, and becomes stable when strain rate is lower than 5 · 10 7s 1. SCC propagation of the steel in the solution at open circuit potential(OCP) needs sufficient hydrogen which is supplied at a certain strain rate.Fracture surface at OCP has similar characteristics with that at cathodic polarization 1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking(HIC).All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution(AD). 展开更多
关键词 hydrogen NaCl solution Stress corrosion cracking Slow strain rate technique Ultra-high strength steel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部