A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a s...A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a suitable route for the preparation of high volumes of graphene derivatives. P-substituted graphene material is developed for its application in hydrogen sorption in room temperature. Phosphorous doped graphene material with multi-layers of graphene shows a nearly ~2.2 wt% hydrogen sorption capacity at 298 K and 100 bar. This value is higher than that for reduced graphene oxide (RGO without phosphorous).展开更多
The hydrogen absorption and desorption behavior of TiMn_(1.25)Cr_(0.25)alloys with VFe substitution for partial Mn was investigated at 273, 293 and 313 K. It is found thatVFe substitution increases their hydrogen stor...The hydrogen absorption and desorption behavior of TiMn_(1.25)Cr_(0.25)alloys with VFe substitution for partial Mn was investigated at 273, 293 and 313 K. It is found thatVFe substitution increases their hydrogen storage capacity, decreases the plateau pressure and thehysteresis factor of their pressure-composition-temperature (PCT) curves. After annealing treatmentat 1223 K for 6 h, TiMn_(0.95)Cr_(0.25)(VFe)_(0.3) alloy exhibits a lower hydrogen desorptionplateau pressure (0.27 MPa at 313 K) and a smaller hysteresis factor (0.13 at 313 K); the maximumand effective hydrogen storage capacities (mass fraction) are 2.03% and 1.12% respectively, whichcan satisfy the demand of hydrogen storage tanks for proton exchange membrane fuel cells (PEMFC).展开更多
Solid chemisorption technologies for hydrogen storage,especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from−20 to 100℃,have a great application potential for realizin...Solid chemisorption technologies for hydrogen storage,especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from−20 to 100℃,have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality.However,there are several challenges to be solved at near ambient temperature,i.e.,unclear hydrogen storage mechanism,low sorption capacity,poor sorption kinetics,and complicated synthetic procedures.In this review,the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed.The interaction between hydrogen and materials is analyzed,including the microscopic,thermodynamic,and mechanical properties.Based on the classification of hydrogen storage metals,the operation temperature zone and temperature shifting methods are discussed.A series of modification and reprocessing methods are summarized,including preparation,synthesis,simulation,and experimental analysis.Finally,perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.展开更多
La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0,0.1,0.2,0.3) alloys were prepared by magnetic induction melting method, and the phase composition and electrochemical properties were investi...La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0,0.1,0.2,0.3) alloys were prepared by magnetic induction melting method, and the phase composition and electrochemical properties were investigated systematically. The alloys were mainly composed of LaNi5, La2Ni7 and LaNi3 phase, and the cell volume of LaNi5 increased with the Al and Sn contents. For the alloy corresponding to x=0.0, the Cmax and C150 were 348.9 and 185 mA h/g, respectively, then for the alloy electrode with x=0.2, even though the Cmax was only 309.0 mA h/g less than 348.9 mA h/g, the C150 of 231 mA h/g was much higher than 185 mA h/g. And the values of the limit current density, anodic peak current density and hydrogen diffusion coefficient of the La0.75Mg0.25Ni2.85Co0.35(AlS n)0.1(x=0.1) alloy were 1079.5, 1023.8 mA /g and 5.71×10–10 cm2/s, respectively. Which were the highest than that of any other electrodes. These results suggested that the kinetic property of the La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0, 0.1, 0.2, 0.3) electrodes could be improved effectively by adding moderate contents of Al and Sn.展开更多
文摘A variety of distinctive techniques have been developed to produce graphene sheets and their functionalized subsidiaries or composites. The production of graphene sheets by oxidative exfoliation of graphite can be a suitable route for the preparation of high volumes of graphene derivatives. P-substituted graphene material is developed for its application in hydrogen sorption in room temperature. Phosphorous doped graphene material with multi-layers of graphene shows a nearly ~2.2 wt% hydrogen sorption capacity at 298 K and 100 bar. This value is higher than that for reduced graphene oxide (RGO without phosphorous).
文摘The hydrogen absorption and desorption behavior of TiMn_(1.25)Cr_(0.25)alloys with VFe substitution for partial Mn was investigated at 273, 293 and 313 K. It is found thatVFe substitution increases their hydrogen storage capacity, decreases the plateau pressure and thehysteresis factor of their pressure-composition-temperature (PCT) curves. After annealing treatmentat 1223 K for 6 h, TiMn_(0.95)Cr_(0.25)(VFe)_(0.3) alloy exhibits a lower hydrogen desorptionplateau pressure (0.27 MPa at 313 K) and a smaller hysteresis factor (0.13 at 313 K); the maximumand effective hydrogen storage capacities (mass fraction) are 2.03% and 1.12% respectively, whichcan satisfy the demand of hydrogen storage tanks for proton exchange membrane fuel cells (PEMFC).
基金the National Natural Science Foundation of China for the Distinguished Young Scholars(Grant No.51825602).
文摘Solid chemisorption technologies for hydrogen storage,especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from−20 to 100℃,have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality.However,there are several challenges to be solved at near ambient temperature,i.e.,unclear hydrogen storage mechanism,low sorption capacity,poor sorption kinetics,and complicated synthetic procedures.In this review,the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed.The interaction between hydrogen and materials is analyzed,including the microscopic,thermodynamic,and mechanical properties.Based on the classification of hydrogen storage metals,the operation temperature zone and temperature shifting methods are discussed.A series of modification and reprocessing methods are summarized,including preparation,synthesis,simulation,and experimental analysis.Finally,perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.
基金Project supported by the National Natural Science Foundation of China(51271061,51571065)Foundation of Guangxi Educational Committee(2013YB006)the Key Laboratory of Guangxi for Nonferrous Metals and Materials Processing Technology
文摘La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0,0.1,0.2,0.3) alloys were prepared by magnetic induction melting method, and the phase composition and electrochemical properties were investigated systematically. The alloys were mainly composed of LaNi5, La2Ni7 and LaNi3 phase, and the cell volume of LaNi5 increased with the Al and Sn contents. For the alloy corresponding to x=0.0, the Cmax and C150 were 348.9 and 185 mA h/g, respectively, then for the alloy electrode with x=0.2, even though the Cmax was only 309.0 mA h/g less than 348.9 mA h/g, the C150 of 231 mA h/g was much higher than 185 mA h/g. And the values of the limit current density, anodic peak current density and hydrogen diffusion coefficient of the La0.75Mg0.25Ni2.85Co0.35(AlS n)0.1(x=0.1) alloy were 1079.5, 1023.8 mA /g and 5.71×10–10 cm2/s, respectively. Which were the highest than that of any other electrodes. These results suggested that the kinetic property of the La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0, 0.1, 0.2, 0.3) electrodes could be improved effectively by adding moderate contents of Al and Sn.