Radiation damage can cause a series of gastrointestinal(GI)tract diseases.The development of safe and effective GI tract radioprotectants still remains a great challenge clinically.Here,we firstly report an oral radio...Radiation damage can cause a series of gastrointestinal(GI)tract diseases.The development of safe and effective GI tract radioprotectants still remains a great challenge clinically.Here,we firstly report an oral radioprotectant Gel@GYY that integrates a porous gelatin-based(Gel)hydrogel and a pH-responsive hydrogen sulfide(H2S)donor GYY4137(morpholin-4-ium 4 methoxyphenyl(morpholino)phosphinodithioate).Gel@GYY has a remarkable adhesion ability and long retention time,which not only enables responsive release of low-dose H2S in stomach and subsequently sustained release of H2S in the whole intestinal tract especially in the colon,but also ensures a close contact between H2S and GI tract.The released H2S can effectively scavenge free radicals induced by X-ray radiation,reduce lipid peroxidation level,repair DNA damage and recover vital superoxide dismutase and glutathione peroxidase activities.Meanwhile,the released H2S inhibits radiation-induced activation of nuclear factorκB(NF-κB),thus reducing inflammatory cytokines levels in GI tract.After treatment,Gel@GYY displays efficient excretion from mice body due to its biodegradability.This work provides a new insight for therapeutic application of intelligent H2S-releasing oral delivery system and potential alternative to clinical GI physical damage protectant.展开更多
Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale ga...Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale gas wells with production rates that are generally lower than that from the large conventional reservoirs, if a superior adsorbent (sorbent) is developed. In this review, we focus our discussion on three types of sorbents: metal- oxide based sorbents, Cu/Ag-based and other commercial sorbents, and amine-grafted silicas. The advantages and disadvantages of each type are analyzed. Possible approaches for future developments to further improve these sorbents are suggested, particularly for the most promising amine-grafted silicas.展开更多
基金the National Natural Science Foundation of China(Nos.22175182,21471103)Sheng Yuan Cooperation(No.2021SYHZ0048)+1 种基金Beijing Natural Science Foundation(No.2202064)the directional institutionalized scientific research platform relies on Beijing Synchrotron Radiation Facility of Chinese Academy of Sciences.
文摘Radiation damage can cause a series of gastrointestinal(GI)tract diseases.The development of safe and effective GI tract radioprotectants still remains a great challenge clinically.Here,we firstly report an oral radioprotectant Gel@GYY that integrates a porous gelatin-based(Gel)hydrogel and a pH-responsive hydrogen sulfide(H2S)donor GYY4137(morpholin-4-ium 4 methoxyphenyl(morpholino)phosphinodithioate).Gel@GYY has a remarkable adhesion ability and long retention time,which not only enables responsive release of low-dose H2S in stomach and subsequently sustained release of H2S in the whole intestinal tract especially in the colon,but also ensures a close contact between H2S and GI tract.The released H2S can effectively scavenge free radicals induced by X-ray radiation,reduce lipid peroxidation level,repair DNA damage and recover vital superoxide dismutase and glutathione peroxidase activities.Meanwhile,the released H2S inhibits radiation-induced activation of nuclear factorκB(NF-κB),thus reducing inflammatory cytokines levels in GI tract.After treatment,Gel@GYY displays efficient excretion from mice body due to its biodegradability.This work provides a new insight for therapeutic application of intelligent H2S-releasing oral delivery system and potential alternative to clinical GI physical damage protectant.
文摘Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale gas wells with production rates that are generally lower than that from the large conventional reservoirs, if a superior adsorbent (sorbent) is developed. In this review, we focus our discussion on three types of sorbents: metal- oxide based sorbents, Cu/Ag-based and other commercial sorbents, and amine-grafted silicas. The advantages and disadvantages of each type are analyzed. Possible approaches for future developments to further improve these sorbents are suggested, particularly for the most promising amine-grafted silicas.