We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging ...We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging and fracture analysis.The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel,with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction(Iδ).However,as the hydrogen traps induced by NbC precipitates approach hydrogen saturation,the effect of the precipitates on the HIC resistance attenuate.We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites.In addition,much like Nb-free steel,the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC.展开更多
The effect of hydrogen on the fractttre behaviors of Incoloy alloy 825 was investigated by means of slow strain rate testing (SSRT) Hydrogen was introduced into the sample by electrochemical charging. The results sh...The effect of hydrogen on the fractttre behaviors of Incoloy alloy 825 was investigated by means of slow strain rate testing (SSRT) Hydrogen was introduced into the sample by electrochemical charging. The results show that surface microcracks form gradually during ag- ing at room temperature when desorption of hydrogen takes place after hydrogen charging at a current density of 5 mA/cm^2 for 24 h. SSRT shows that the increase of ductility loss is significantly obvious as the hydrogen charging current density increases. Scanning electron microscopy (SEM) images reveal ductile fracture in the pre-charged sample with low current densities, while the fracture includes small quasi-cleavage regions and tends to be brittle fracture as the hydrogen charging current density increases to 5 mA/cm^2.展开更多
In this paper, the microstructure and hardness of HG980D heat-affected zone (HAZ) at different cooling rate t8/3 were studied, the implant critical fracture stress under three diffusible hydrogen conditions were mea...In this paper, the microstructure and hardness of HG980D heat-affected zone (HAZ) at different cooling rate t8/3 were studied, the implant critical fracture stress under three diffusible hydrogen conditions were measured, and the hydrogeninduced cracking (H1C) fructograph of steel HG980D were analyzed, The experimental results show that martensite exists in HAZ of HG980D till ts/3 ≥ 150 s, the harden quenching tendency of HG980D is greater; The implant critical fracture stress is related to difJhsible hydrogen content significantly, at low hydrogen level, high restraint stress is needed to nucleate HIC, the fraetograph is mainly mierovoid coalescence, bat at high hydrogen level, only small restraint stress can cause H1C occurrence, the fractograph is mainly quasicleavage. It is very important to choose ultra-low hydrogen welding consumable to weld steel HG980D to prevent hydrogen-induced cracking.展开更多
The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cr...The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.展开更多
Hydrogen-induced cracking (HIC) of Fe3Al alloy was studied by in situ transmission electron microscope (TEM). Electron transparent specimens were mounted onto a constant displacement device. Stress was applied to the ...Hydrogen-induced cracking (HIC) of Fe3Al alloy was studied by in situ transmission electron microscope (TEM). Electron transparent specimens were mounted onto a constant displacement device. Stress was applied to the specimen by using a bolt through the device. The results showed that hydrogen enhanced the dislocation emission and motion in Fe3Al alloy. A dislocation free zone (DFZ) was formed following the dislocation emission. Microcrack initiated in the DFZ or at the main crack tip when the emission reached a critical extension. Hydrogen played an important role in the process of brittle fracture of Fe3Al alloy.展开更多
For 308L and 347L weld metals of austenitc stainless steels (ASS), hydrogen induced cracking (HIC) occurred during dynamically charging under constant load. The threshold stress intensity for HIC, Km, decreased linear...For 308L and 347L weld metals of austenitc stainless steels (ASS), hydrogen induced cracking (HIC) occurred during dynamically charging under constant load. The threshold stress intensity for HIC, Km, decreased linearly with the logarithm of the concentration of diffusible hydrogen C0 in the weld metals and the rolled plate of type 304L ASS, i.e., KIH=85.2-10.71nC0 (308L), KIH=76.1-9.31n C0(347L), and KIH=91.7-10.11nC0(304L). The fracture mode for HIC in the three type of ASS changed from ductile to brittle with the decrease in the applied stress intensity KI or/and the increase in C0. The boundary line between ductile and brittle fracture surfaces was KI-54+25exp(-C0/153)=0.展开更多
Hydrogen embrittlement of pipelines depends on the hydrogen-induced cracking behavior of the pipeline steel microstructure.Based on molecular dynamics analysis,the ferrite–cementite(α-Fe/Fe3C)lamellar atomic structu...Hydrogen embrittlement of pipelines depends on the hydrogen-induced cracking behavior of the pipeline steel microstructure.Based on molecular dynamics analysis,the ferrite–cementite(α-Fe/Fe3C)lamellar atomic structure with the Bagaryatskii orientation relationship was established,and stepwise relaxation of the conjugate gradient energy minimization and constant-temperature and constant-pressure relaxation were performed under NPT(the isothermal–isobaric)conditions.The mechanical property curves of theα-Fe/Fe3C models were obtained under different cementite terminal plane structures,and the evolution of the atomic structure was analyzed in detail.In addition,the influence of different hydrogen concentrations,different temperatures,different strain rates,changes in voids,and different micro-degrees of freedom on the deformation and failure mechanism of the model was investigated,aiming to provide a reliable way to explore the micro-mechanism of macro-cracking behavior of pipeline steel.展开更多
The synergistic effects of Nb and Mo on hydrogen-induced cracking(HIC)of pipeline steels were studied experimentally and numerically.The results showed that Mo was primarily segregated at grain-boundaries(GBs)or solid...The synergistic effects of Nb and Mo on hydrogen-induced cracking(HIC)of pipeline steels were studied experimentally and numerically.The results showed that Mo was primarily segregated at grain-boundaries(GBs)or solid-dissolved in the matrix,while most Nb and a small amount of Mo formed dis-persed(Nb,Mo)C nano-precipitates and refined the microstructure.Compared with Nb alloying,the multi-ple additions of Nb-Mo played dual roles in affecting H diffusion:primarily,the H-traps densities such as GBs,precipitates,and solute Mo atoms increased,providing an advantage;however,Mo slightly reduced the H-trapping capacity of precipitates,playing an adverse role.Nonetheless,the beneficial effects far outweighed the adverse effects,thereby reducing H diffusivity and inhibiting crack initiation.Addition-ally,Nb and Mo hindered crack propagation synergistically as follows:(i)Mo enhanced GB cohesion by repelling H,impeding intergranular cracking and hydrogen-enhanced decohesion(HEDE);(ii)Nb reduced the proportion of3/high-angle grain boundaries,increasing cracking resistance;(iii)(Nb,Mo)C precip-itates impeded H-dislocation interactions,reducing the hydrogen-enhanced localized plasticity(HELP).展开更多
The change in dislocation configuration ahead of a loaded crack tip before and after charging with hydrogen was in situ investigated in TEM using a special constant deflection loading device The results showed that hy...The change in dislocation configuration ahead of a loaded crack tip before and after charging with hydrogen was in situ investigated in TEM using a special constant deflection loading device The results showed that hydrogen could facilitate dislocation emission, multiplication and motion The change in displacement field ahead of a loaded notch tip for a bulk specimen before and after charging with hydrogen was in situ measured by the laser moire interferometer technique. The results showed that hydrogen could enlarge the plastic zone and increase the plastic strain The in situ observation in TEM showed that when hydrogen-enhanced dislocation emission and motion reached a critical condition, a nanocrack of hydrogen-induced cracking ( HIC) would nucleate in the dislocation-free zone (DFZ) or at the main crack tip. The reasons for hydrogen-enhanced dislocation emission, multiplication and motion, and the mechanisms of nucleation of HIC have been discussed展开更多
Hydrogen-induced cracking was investigated by TEM in-situ tension in hydrogenated stainless steel of type 310. It was found experimentally that hydrogen-induced cracking happens via nanovoid nucleation followed by qua...Hydrogen-induced cracking was investigated by TEM in-situ tension in hydrogenated stainless steel of type 310. It was found experimentally that hydrogen-induced cracking happens via nanovoid nucleation followed by quasi-cleavage along {111} planes when C H is higher. Otherwise, in the case of lower C H, hydrogen enhances ductile fracture via hydrogen-enhanced microvoid nucleation, growth and connection. A new model was proposed based on the present experiments. Dislocations break away from defect atmospheres and move away from the DFZ, leaving vacancy and hydrogen clusters along {111} planes. Hydrogen tends to combine with vacancy clusters and initiate nanovoids along {111} planes. Dense nanovoids connect each other, resulting in brittle cracking. Scattered nanovoids grow into microvoids or even macrovoids, leading to ductile fracture.展开更多
Threshold stress intensity factor of hydrogen-induced cracking (HIC), K IH, of a lead zirconate titanate ferroelectric ceramics (PZT-5) has been measured during dynamic charging with various current densities at const...Threshold stress intensity factor of hydrogen-induced cracking (HIC), K IH, of a lead zirconate titanate ferroelectric ceramics (PZT-5) has been measured during dynamic charging with various current densities at constant load using notched tensile specimens with poling direction parallel or perpendicular to the crack plane. The results show that K IH reveals anisotropy, and the threshold stress intensity factor for the specimen with poling direction parallel to the crack plane, K IH a , is greater than that perpendicular to the crack plane, K IH b , similar to the anisotropy of fracture toughness, K IC. The normalized threshold stress intensity factor of HIC, however, does not reveal anisotropy, and decreass linearly with logarithm of hydrogen concentration, C o, i.e. K IH a /K IC a =K IH b /K IC b =0.4?0.15 In C o. Therefore, the anisotropy of HIC is the same as that of the fracture toughness, and is due to the anisotropy of the stress-induced 90° domain switching.展开更多
The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied.Samples 19...The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied.Samples 19.1 x 6 x 2 mm,containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer,were submitted to Rp and HIC corrosion tests.Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003,in this case,modified only with regard to the size of the samples.Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5℃.s-1) showed higher susceptibility to hydrogen-induced cracking,with large cracks in the middle of the sample propagating along segregation bands,corresponding to the centerline of the plate thickness.For cooling rates of 10℃.s-1,only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions.For higher cooling rates (40℃.s-1) very few small cracks were detected,linked to non-metallic inclusions.This result suggests that structures formed by polygonal structures and segregation bands (were eutectoid microconstituents predominate) have higher susceptibility to HIC.Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals.Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation;segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks,frequently associated to non-metallic inclusions.Polarization resistance essays performed on the steel in theas received condition,prior to any heat treatment,showed larger differences between the regions of the plate,with a considerably lower Rp in the centerline.The austenitization heat treatments followed by cooling rates of 0.5 e 10℃.s-1 made more uniform the corrosion resistance along the thickness of the plate.The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed,allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.展开更多
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ...Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.展开更多
Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey so...Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.展开更多
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa...Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.展开更多
The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporat...The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporation,while a digital camera was utilized to capture the initiation and progression of soil surface cracking.Results indicate that in the early drying process,the rate of evapotranspiration in vegetated soil correlates positively with leaf biomass.For soil samples with the same layer thickness,the constant rate stage duration is consistently shorter in vegetated soil samples than in their bare soil counterparts.As the layer thickness increases,both vegetated and bare soil samples crack at higher water content.However,vegetated soil samples crack at lower water content than their bare soil counterparts.Vegetation significantly reduces the soil surface crack ratio and improves the soil crack resistance.The crack reduction ratio is positively correlated with both root weight and length density.In thicker vegetated soil layers,the final surface crack length noticeably declines.展开更多
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t...A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.展开更多
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s...Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.展开更多
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical fun...Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(No.2016YFB0300604)the National Natural Science Foundation of China(Nos.51971033 and 51801011)+1 种基金the National Basic Research Program of China(No.2014CB643300)the National Materials Corrosion and Protection Data Center.
文摘We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging and fracture analysis.The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel,with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction(Iδ).However,as the hydrogen traps induced by NbC precipitates approach hydrogen saturation,the effect of the precipitates on the HIC resistance attenuate.We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites.In addition,much like Nb-free steel,the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC.
文摘The effect of hydrogen on the fractttre behaviors of Incoloy alloy 825 was investigated by means of slow strain rate testing (SSRT) Hydrogen was introduced into the sample by electrochemical charging. The results show that surface microcracks form gradually during ag- ing at room temperature when desorption of hydrogen takes place after hydrogen charging at a current density of 5 mA/cm^2 for 24 h. SSRT shows that the increase of ductility loss is significantly obvious as the hydrogen charging current density increases. Scanning electron microscopy (SEM) images reveal ductile fracture in the pre-charged sample with low current densities, while the fracture includes small quasi-cleavage regions and tends to be brittle fracture as the hydrogen charging current density increases to 5 mA/cm^2.
文摘In this paper, the microstructure and hardness of HG980D heat-affected zone (HAZ) at different cooling rate t8/3 were studied, the implant critical fracture stress under three diffusible hydrogen conditions were measured, and the hydrogeninduced cracking (H1C) fructograph of steel HG980D were analyzed, The experimental results show that martensite exists in HAZ of HG980D till ts/3 ≥ 150 s, the harden quenching tendency of HG980D is greater; The implant critical fracture stress is related to difJhsible hydrogen content significantly, at low hydrogen level, high restraint stress is needed to nucleate HIC, the fraetograph is mainly mierovoid coalescence, bat at high hydrogen level, only small restraint stress can cause H1C occurrence, the fractograph is mainly quasicleavage. It is very important to choose ultra-low hydrogen welding consumable to weld steel HG980D to prevent hydrogen-induced cracking.
基金Item Sponsored by Special Funds for State Major Basis Research(G19990650)
文摘The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.
文摘Hydrogen-induced cracking (HIC) of Fe3Al alloy was studied by in situ transmission electron microscope (TEM). Electron transparent specimens were mounted onto a constant displacement device. Stress was applied to the specimen by using a bolt through the device. The results showed that hydrogen enhanced the dislocation emission and motion in Fe3Al alloy. A dislocation free zone (DFZ) was formed following the dislocation emission. Microcrack initiated in the DFZ or at the main crack tip when the emission reached a critical extension. Hydrogen played an important role in the process of brittle fracture of Fe3Al alloy.
基金This project was supported by the Special Fund for the MajorState Basic Research projects(No. G19990650).
文摘For 308L and 347L weld metals of austenitc stainless steels (ASS), hydrogen induced cracking (HIC) occurred during dynamically charging under constant load. The threshold stress intensity for HIC, Km, decreased linearly with the logarithm of the concentration of diffusible hydrogen C0 in the weld metals and the rolled plate of type 304L ASS, i.e., KIH=85.2-10.71nC0 (308L), KIH=76.1-9.31n C0(347L), and KIH=91.7-10.11nC0(304L). The fracture mode for HIC in the three type of ASS changed from ductile to brittle with the decrease in the applied stress intensity KI or/and the increase in C0. The boundary line between ductile and brittle fracture surfaces was KI-54+25exp(-C0/153)=0.
基金Financial support from the Scientific and Technological Innovation Team for the Safety of Petroleum Tubular Goods at the Southwest Petroleum University(Grant No.2018CXTD01)“The Young Scholars”Development Fund of the Southwest Petroleum University of China is appreciated.
文摘Hydrogen embrittlement of pipelines depends on the hydrogen-induced cracking behavior of the pipeline steel microstructure.Based on molecular dynamics analysis,the ferrite–cementite(α-Fe/Fe3C)lamellar atomic structure with the Bagaryatskii orientation relationship was established,and stepwise relaxation of the conjugate gradient energy minimization and constant-temperature and constant-pressure relaxation were performed under NPT(the isothermal–isobaric)conditions.The mechanical property curves of theα-Fe/Fe3C models were obtained under different cementite terminal plane structures,and the evolution of the atomic structure was analyzed in detail.In addition,the influence of different hydrogen concentrations,different temperatures,different strain rates,changes in voids,and different micro-degrees of freedom on the deformation and failure mechanism of the model was investigated,aiming to provide a reliable way to explore the micro-mechanism of macro-cracking behavior of pipeline steel.
基金the support from the Na-tional Natural Science Foundation of China(No.52101092,and 52231003)the Natural Science Foundation of Hubei Province of China(No.2021CFA023)+2 种基金the International Science and Technology Cooperation Project of Hubei Province(2021EHB006)the Young Elite Scientists Sponsorship Program by CAST(No.20210324)the Petro China Innovation Foundation(No.2020D-5007-0311)。
文摘The synergistic effects of Nb and Mo on hydrogen-induced cracking(HIC)of pipeline steels were studied experimentally and numerically.The results showed that Mo was primarily segregated at grain-boundaries(GBs)or solid-dissolved in the matrix,while most Nb and a small amount of Mo formed dis-persed(Nb,Mo)C nano-precipitates and refined the microstructure.Compared with Nb alloying,the multi-ple additions of Nb-Mo played dual roles in affecting H diffusion:primarily,the H-traps densities such as GBs,precipitates,and solute Mo atoms increased,providing an advantage;however,Mo slightly reduced the H-trapping capacity of precipitates,playing an adverse role.Nonetheless,the beneficial effects far outweighed the adverse effects,thereby reducing H diffusivity and inhibiting crack initiation.Addition-ally,Nb and Mo hindered crack propagation synergistically as follows:(i)Mo enhanced GB cohesion by repelling H,impeding intergranular cracking and hydrogen-enhanced decohesion(HEDE);(ii)Nb reduced the proportion of3/high-angle grain boundaries,increasing cracking resistance;(iii)(Nb,Mo)C precip-itates impeded H-dislocation interactions,reducing the hydrogen-enhanced localized plasticity(HELP).
基金Project supported by the National Natural Science Foundation of China and the State Key Laboratory of Corrosion and Protection of Metal.
文摘The change in dislocation configuration ahead of a loaded crack tip before and after charging with hydrogen was in situ investigated in TEM using a special constant deflection loading device The results showed that hydrogen could facilitate dislocation emission, multiplication and motion The change in displacement field ahead of a loaded notch tip for a bulk specimen before and after charging with hydrogen was in situ measured by the laser moire interferometer technique. The results showed that hydrogen could enlarge the plastic zone and increase the plastic strain The in situ observation in TEM showed that when hydrogen-enhanced dislocation emission and motion reached a critical condition, a nanocrack of hydrogen-induced cracking ( HIC) would nucleate in the dislocation-free zone (DFZ) or at the main crack tip. The reasons for hydrogen-enhanced dislocation emission, multiplication and motion, and the mechanisms of nucleation of HIC have been discussed
文摘Hydrogen-induced cracking was investigated by TEM in-situ tension in hydrogenated stainless steel of type 310. It was found experimentally that hydrogen-induced cracking happens via nanovoid nucleation followed by quasi-cleavage along {111} planes when C H is higher. Otherwise, in the case of lower C H, hydrogen enhances ductile fracture via hydrogen-enhanced microvoid nucleation, growth and connection. A new model was proposed based on the present experiments. Dislocations break away from defect atmospheres and move away from the DFZ, leaving vacancy and hydrogen clusters along {111} planes. Hydrogen tends to combine with vacancy clusters and initiate nanovoids along {111} planes. Dense nanovoids connect each other, resulting in brittle cracking. Scattered nanovoids grow into microvoids or even macrovoids, leading to ductile fracture.
基金This work was supported by the Special Funds for the Major State Basic Research (G 19990650) and the National Natural Science Foundation of China (Grant No. 50131160738).
文摘Threshold stress intensity factor of hydrogen-induced cracking (HIC), K IH, of a lead zirconate titanate ferroelectric ceramics (PZT-5) has been measured during dynamic charging with various current densities at constant load using notched tensile specimens with poling direction parallel or perpendicular to the crack plane. The results show that K IH reveals anisotropy, and the threshold stress intensity factor for the specimen with poling direction parallel to the crack plane, K IH a , is greater than that perpendicular to the crack plane, K IH b , similar to the anisotropy of fracture toughness, K IC. The normalized threshold stress intensity factor of HIC, however, does not reveal anisotropy, and decreass linearly with logarithm of hydrogen concentration, C o, i.e. K IH a /K IC a =K IH b /K IC b =0.4?0.15 In C o. Therefore, the anisotropy of HIC is the same as that of the fracture toughness, and is due to the anisotropy of the stress-induced 90° domain switching.
文摘The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied.Samples 19.1 x 6 x 2 mm,containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer,were submitted to Rp and HIC corrosion tests.Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003,in this case,modified only with regard to the size of the samples.Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5℃.s-1) showed higher susceptibility to hydrogen-induced cracking,with large cracks in the middle of the sample propagating along segregation bands,corresponding to the centerline of the plate thickness.For cooling rates of 10℃.s-1,only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions.For higher cooling rates (40℃.s-1) very few small cracks were detected,linked to non-metallic inclusions.This result suggests that structures formed by polygonal structures and segregation bands (were eutectoid microconstituents predominate) have higher susceptibility to HIC.Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals.Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation;segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks,frequently associated to non-metallic inclusions.Polarization resistance essays performed on the steel in theas received condition,prior to any heat treatment,showed larger differences between the regions of the plate,with a considerably lower Rp in the centerline.The austenitization heat treatments followed by cooling rates of 0.5 e 10℃.s-1 made more uniform the corrosion resistance along the thickness of the plate.The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed,allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.
基金financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012,42230710)Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,Chinese Academy of Sciences(Grant No.xbzg-zdsys-202107).
文摘Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.
基金the National Natural Science Foundation of China Projects under Grant[Nos.51871211,U21A2049,52071220,51701129 and 51971054]Liaoning Province’s project of"Revitalizing Liaoning Talents"(XLYC1907062)+10 种基金the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province(No.2019-BS-200)the Strategic New Industry Development Special Foundation of Shenzhen(JCYJ20170306141749970)the funds of International Joint Laboratory for Light AlloysLiaoning Bai Qian Wan Talents Programthe Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)National Key Research and Development Program of China under Grant[Nos.2017YFB0702001 and 2016YFB0301105]the Innovation Fund of Institute of Metal Research(IMR)Chinese Academy of Sciences(CAS)the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205the Fundamental Research Fund for the Central Universities under Grant[No.N2009006]Bintech-IMR R&D Program[No.GYY-JSBU-2022-009]。
文摘Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.
基金support from the National Natural Science Foundation of China(Grant No.42172290,42230710,41925012)the Natural Science Foundation of Jiangsu Province(Grant No.BK20221250).
文摘The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporation,while a digital camera was utilized to capture the initiation and progression of soil surface cracking.Results indicate that in the early drying process,the rate of evapotranspiration in vegetated soil correlates positively with leaf biomass.For soil samples with the same layer thickness,the constant rate stage duration is consistently shorter in vegetated soil samples than in their bare soil counterparts.As the layer thickness increases,both vegetated and bare soil samples crack at higher water content.However,vegetated soil samples crack at lower water content than their bare soil counterparts.Vegetation significantly reduces the soil surface crack ratio and improves the soil crack resistance.The crack reduction ratio is positively correlated with both root weight and length density.In thicker vegetated soil layers,the final surface crack length noticeably declines.
基金the National Key R&D Program of China(2022YFA1504404)the SINOPEC Research Program(121036-5).
文摘A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.
基金the financial support by the Defense Industrial Technology Development Program(No.JCKY2020130C024)the National Science and Technology Major Project,China(No.Y2019-Ⅶ-0011-0151)the Science Center for Gas Turbine Project(No.P2022-C-Ⅳ-002-001)。
文摘Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
基金the following funding agencies for supporting this work: the National Natural Science Foundation of China (22025502, U23A20552, 22379026, 22222901, 22175022)the Natural Science Foundation of Shanghai (23ZR1407000)the Science and Technology Commission of Shanghai Municipality (21DZ1206800)
文摘Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.