期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering 被引量:2
1
作者 汝丽丽 黄建军 +1 位作者 高亮 齐冰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第5期551-555,共5页
Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy... Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas. 展开更多
关键词 hydrogenated diamond-like carbon films ECR plasma magnetron sputtering microwave power
下载PDF
Effect of ZnO Electrodeposited on Carbon Film and Decorated with Metal Nanoparticles for Solar Hydrogen Production
2
作者 Young Kwang Kim Hye-Jin Seo +3 位作者 Soonhyun Kim Sung-Ho Hwang Hyunwoong Park Sang Kyoo Lim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期1059-1065,共7页
In this study, we prepared horn-like ZnO structures on carbon films(ZnO/CF) by electrodeposition and decorated the ZnO horns with different metals(Ag, Au, and Pt) via photodeposition(M-ZnO/CF). Using M-ZnO/CF as... In this study, we prepared horn-like ZnO structures on carbon films(ZnO/CF) by electrodeposition and decorated the ZnO horns with different metals(Ag, Au, and Pt) via photodeposition(M-ZnO/CF). Using M-ZnO/CF as photocatalysts, we examined ways to enhance solar hydrogen production from various points of view, such as modifying the intrinsic physical properties and thermodynamics of the materials, and varying the chemical environment during M-ZnO/CF fabrication. In particular, we focused on the effects of the carbon film and metals in M-ZnO/CF hybrid photocatalysts on solar hydrogen production. The type of metal nanoparticles is an important factor in solar hydrogen production because the deposition rate and electrical conductivity of each metal affect the proton-water reduction ability. 展开更多
关键词 Solar hydrogen production ZnO horn carbon film Metal nanoparticle Electrodeposition
原文传递
Running-in behavior of a H‒DLC/Al_(2)O_(3) pair at the nanoscale 被引量:1
3
作者 Pengfei SHI Junhui SUN +4 位作者 Yunhai LIU Bin ZHANG Junyan ZHANG Lei CHEN Linmao QIAN 《Friction》 SCIE EI CAS CSCD 2021年第6期1464-1473,共10页
Diamond-like carbon(DLC)film has been developed as an extremely effective lubricant to reduce energy dissipation;however,most films should undergo running-in to achieve a super-low friction state.In this study,the run... Diamond-like carbon(DLC)film has been developed as an extremely effective lubricant to reduce energy dissipation;however,most films should undergo running-in to achieve a super-low friction state.In this study,the running-in behaviors of an H–DLC/Al_(2)O_(3) pair were investigated through a controllable single-asperity contact study using an atomic force microscope.This study presents direct evidence that illustrates the role of transfer layer formation and oxide layer removal in the friction reduction during running-in.After 200 sliding cycles,a thin transfer layer was formed on the Al2O3 tip.Compared with a clean tip,this modified tip showed a significantly lower adhesion force and friction force on the original H–DLC film,which confirmed the contribution of the transfer layer formation in the friction reduction during running-in.It was also found that the friction coefficient of the H–DLC/Al_(2)O_(3) pair decreased linearly as the oxygen concentration of the H–DLC substrate surface decreased.This phenomenon can be explained by a change in the contact surface from an oxygen termination with strong hydrogen bond interactions to a hydrogen termination with weak van der Waals interactions.These results provide new insights that quantitatively reveal the running-in mechanism at the nanoscale,which may help with the design optimization of DLC films for different environmental applications. 展开更多
关键词 hydrogenated diamond-like carbon(H–DLC)film RUNNING-IN NANOSCALE oxide film transfer layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部