Highly dispersed Pd/N-doped carbon dots(Pd/NCDs)were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres(NMS).The synthesized Pd/NCDs@NMS catalyst exhibi...Highly dispersed Pd/N-doped carbon dots(Pd/NCDs)were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres(NMS).The synthesized Pd/NCDs@NMS catalyst exhibits outstanding performance in the catalytic reduction of 4-nitrophenol(4-NP),achieving a turnover frequency of 1461.8 mol·molPd^(-1)·h^(-1),with the conversion rate remaining above 80%after 11 cycles.Experiments and density functional theory calculations reveal that the NCDs significantly affect the electronic structure of Pd nanoparticles,leading to changes in the energy barriers for the adsorption of 4-NP at the Pd sites and the conversion of 4-NP reaction intermediates,which is a key factor contributing to the catalytic performance.This study offers a new strategy for synthesizing carbon-dot-modified metal-based catalysts.展开更多
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti...A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.展开更多
This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ...This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.展开更多
A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temp...A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temperature.Pt@ZIF-8 was highly porous and well crystallized.The Pt nanoparticles were well dispersed within the ZIF-8 support.In the hydrogenation of 1,4-butynediol,Pt@ZIF-8 exhibited high activity,excellent selectivity for 1,4-butenediol of greater than 94%,and reusability.The Pt@ZIF-8 catalyst did not require further additives.The favorable catalytic performance was attributed primarily to the modification of the ZIF-8 support by the platinum nanoparticles.展开更多
Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we re...Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate.展开更多
NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exh...NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).展开更多
Spinel ferrites NiFeOsupported Ru catalysts have been prepared via a simple sol–gel route and applied for converting biomass-derived furfural to 2-methylfuran. The as-prepared catalysts were characterized by thermogr...Spinel ferrites NiFeOsupported Ru catalysts have been prepared via a simple sol–gel route and applied for converting biomass-derived furfural to 2-methylfuran. The as-prepared catalysts were characterized by thermogravimetric analysis(TG), Nadsorption–desorption, X-ray diffraction(XRD), scanning electronic microscopy(SEM), and X-ray photoelectron spectroscopy(XPS). Results showed that the catalysts had well-dispersed Ru active sites and large surface area for calcination temperature ranging from 300 to 500 ℃. The conversion of biomass-derived furfural into 2-methylfuran was conducted over Ru/NiFeOthrough catalytic transfer hydrogenation in liquid-phase with 2-propanol as the hydrogen source. A significantly enhanced activity and increased 2-methylfuran yield have been achieved in this study. Under mild conditions(180 ℃ and 2.1 MPa N), the conversion of furfural exceeds 97% and 2-methylfuran yield was up to 83% over the catalyst containing 8 wt% Ru. After five repeated uses, the catalytic activity and the corresponding product yield remained almost unchanged. The excellent catalytic activity and recycling performance provide a broad prospects for various practical applications.展开更多
The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the c...The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.展开更多
LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nan...LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nanoconfinement is effective in achieving low dehydrogenation temperature and favorable reversibility.Besides,graphene can serve as supporting materials for LiBH_(4)catalysts and also destabilize LiBH_(4)via interfacial reaction.However,graphene has never been used alone as a frame material for nanoconfining LiBH_(4).In this study,graphene microflowers with large pore volumes were prepared and used as nanoconfinement framework material for LiBH_(4),and the nanoconfinement effect of graphene was revealed.After loading 70 wt%of LiBH_(4) and mechanically compressed at 350 MPa,8.0 wt% of H2 can be released within 100 min at 320C,corresponding to the highest volumetric hydrogen storage density of 94.9 g H2 L^(-1)ever reported.Thanks to the nanoconfinement of graphene,the rate-limiting step of dehydrogenation of nanoconfined LiBH_(4) was changed and its apparent activation energy of the dehydrogenation(107.3 kJ mol^(-1))was 42%lower than that of pure LiBH_(4).Moreover,the formation of the intermediate Li_(2)B_(12)H_(12) was effectively inhibited,and the stable nanoconfined structure enhanced the reversibility of LiBH_(4).This work widens the understanding of graphene's nanoconfinement effect and provides new insights for developing high-density hydrogen storage materials.展开更多
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a...For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.展开更多
Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffrac...Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffractometer(XRD) and scanning electron microscope(SEM),and the electrochemical properties were investigated by an electrochemical workstation.The experimental results show that the Co_(3)O_(4) catalysts are successfully prepared on the foamed copper support by hydrothermal method,and the material’s morphology is mainly flower cluster.When the current density is 10 mA·cm^(-2),the overpotential value of the Co_(3)O_(4)/CF catalyst is 141 mV,lower than that of blank support.The electrochemical impedance(EIS) spectrum shows that the R_(ct )value of the Co_(3)O_(4)/CF catalyst decreases,and the Coulomb curves of double-layer show that the electrochemically active area of the Co_(3)O_(4)/CF catalyst efficiently increases compared with that of the blank support.Therefore,the as-obtained Co_(3)O_(4)/CF catalyst exhibits a good hydrogen evolution rate,showing great applicability potential in the catalytic electrolysis of water for hydrogen production.展开更多
Supported Ru-based catalysts, prepared by a surfactant-stabilized colloidal method, exhibited a good selectivity to bis(4-aminocyclohexyl)methane via the hydrogenation of 4,4′-methylenedianiline. Transmission elect...Supported Ru-based catalysts, prepared by a surfactant-stabilized colloidal method, exhibited a good selectivity to bis(4-aminocyclohexyl)methane via the hydrogenation of 4,4′-methylenedianiline. Transmission electron microscopy(TEM) and X-ray diffraction(XRD) characterization showed Ru nanoparticles were well-dispersed on activated carbon, leading to the high activity and selectivity to the product.展开更多
The hydrogen storage properties and catalytic mechanism of FeCl-doped LiAlHwere investigated in minute details. LiAlH-2 mol% FeClsamples start to release hydrogen at 76 °C, which is 64 °C lower than that of ...The hydrogen storage properties and catalytic mechanism of FeCl-doped LiAlHwere investigated in minute details. LiAlH-2 mol% FeClsamples start to release hydrogen at 76 °C, which is 64 °C lower than that of as-received LiAlH. Isothermal desorption measurements show that the 2 mol% FeCl-doped sample releases 7.0 wt% of hydrogen within 17 min at 250 °C. At lower temperatures of 110 °C and 80 °C, the sample can release 4.4 wt% and 3 wt% of hydrogen, respectively. The apparent activation energy of LiAlH-2 mol% FeClsamples for R2 is 105.02 k J/mol, which is 67 k J/mol lower than that of pure LiAlH. The reaction between LiAlHand FeClduring ball milling was found by analyzing the X-ray diffraction results,and Fe-Al particles formed in-situ from the reaction act as the real catalyst for the dehydrogenation of LiAlH.展开更多
The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical in...The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.展开更多
Sodium borohydride(NaBH_(4)) is considered as the most potential hydrogen storage material for portable proton exchange membrane fuel cells(PEMFC)because of its high theoretical hydrogen capacity.However,the slow and ...Sodium borohydride(NaBH_(4)) is considered as the most potential hydrogen storage material for portable proton exchange membrane fuel cells(PEMFC)because of its high theoretical hydrogen capacity.However,the slow and poor kinetic stability of hydrogen generation from NaBH_(4) hydrolysis limits its application.There are two main factors influencing the kinetics stability of hydrogen generation from NaBH_(4).One factor is that the alkaline byproducts(NaBO_(2)) of the hydrolysis reaction can increase the pH of the solution,thus inhibiting the reaction process.It mainly happens in the NaBH_(4) solution hydrolysis system.Another factor is that the monotonous increase in reaction temperature leads to uncontrollable and unpredictable hydrolysis rates in the solid NaBH_(4) hydrolysis system.This is due to the excess heat generated from this exothermic reaction in the initial reaction of NaBH_(4) hydrolysis.In this perspective,we summarize the latest research progress in hydrogen generation from NaBH_(4) and emphasize the design principles of catalysts for hydrogen generation from NaBH_(4) solution and solid state NaBH_(4).The importance of carbon as catalyst support material for NaBH_(4) hydrolysis is also highlighted.展开更多
Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amou...Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amount of modifier, initial concentration of reactant, pressure and temperature on conversion and enantiometric excess in a stirred autoclave and the effects of the liquid velocity, gas velocity, modifier concentration and various catalytic beds in a trickle-bed reactor. The maximum optical yields were about 50% and 60% in the two types of reactors, respectively. It was assumed that the total hydrogenation rate included the reaction rates over the unmodified and modified active sites on platinum surface and a kinetic model, which fitted the experimental data well in autoclave, was obtained. A simplified plug-flow model was proposed to describe the bed average efficiency of trickle-bed reactor.展开更多
A new method to modify the solidification microstructure of titanium alloys, named melt hydrogenation, by adding TiH2 as additive into the melt of titanium alloys during induction skull melting process (ISM), is put f...A new method to modify the solidification microstructure of titanium alloys, named melt hydrogenation, by adding TiH2 as additive into the melt of titanium alloys during induction skull melting process (ISM), is put forward and the refining effect of this method on the solidification microstructure of Ti-6Al-4V alloy was studied experimentally. After melt hydrogenation, the grain sizes of as-cast Ti-6Al-4V alloy decreased to 612 μm from 1,072 μm, lath-shaped α phase was also refined and fine α/β lamellar microstructure was formed when 1.0 wt.% TiH2 was added. δ-hydride was found in the X-ray diffraction (XRD) spectra of Ti-6Al-4V alloy that prepared with 1.0 wt.% TiH2 added and the δ-hydride distributes in α phase as acicular precipitations.展开更多
Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity rela...Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity relationships.The traditional ML models are always difficult to identify the structural differences among the single-atom systems with different modification methods,leading to the limitation of the potential application range.Aiming to the structural properties of several typical two-dimensional MA_(2)Z_(4)-based single-atom systems(bare MA_(2)Z_(4) and metal single-atom doped/supported MA_(2)Z_(4)),an improved crystal graph convolutional neural network(CGCNN)classification model was employed,instead of the traditional machine learning regression model,to address the challenge of incompatibility in the studied systems.The CGCNN model was optimized using crystal graph representation in which the geometric configuration was divided into active layer,surface layer,and bulk layer(ASB-GCNN).Through ML and DFT calculations,five potential single-atom hydrogen evolution reaction(HER)catalysts were screened from chemical space of 600 MA_(2)Z_(4)-based materials,especially V_(1)/HfSn_(2)N_(4)(S)with high stability and activity(Δ_(GH*)is 0.06 eV).Further projected density of states(pDOS)analysis in combination with the wave function analysis of the SAC-H bond revealed that the SAC-dz^(2)orbital coincided with the H-s orbital around the energy level of−2.50 eV,and orbital analysis confirmed the formation ofσbonds.This study provides an efficient multistep screening design framework of metal single-atom catalyst for HER systems with similar two-dimensional supports but different geometric configurations.展开更多
One of the central tasks in the field of heterogeneous catalysis is to establish structure‐function relationships for these catalysts,especially for precious metals dispersed on the sub‐nanometer scale.Here,we repor...One of the central tasks in the field of heterogeneous catalysis is to establish structure‐function relationships for these catalysts,especially for precious metals dispersed on the sub‐nanometer scale.Here,we report the preparation of MgAl2O4‐supported Pt nanoparticles,amorphous aggregates and single atoms,and evaluate their ability to catalyze the hydrogenation of benzaldehyde.The Pt species were characterized by N2adsorption,X‐ray diffraction(XRD),aberration‐corrected transmission electron microscopy(ACTEM),CO chemisorption and in situ Fourier transform infrared spectroscopy of the chemisorbed CO,as well as by inductively coupled plasma atomic emission spectroscopy.They existed as isolated or neighboring single atoms on the MgAl2O4support,and formed amorphous Pt aggregates and then nanocrystallites with increased Pt loading.On the MgAl2O4support,single Pt atoms were highly active in the selective catalytic hydrogenation of benzaldehyde to benzyl alcohol.The terrace atoms of the Pt particles were more active but less selective;this was presumably due to their ability to form bridged carbonyl adsorbates.The MgAl2O4‐supported single‐atom Pt catalyst is a novel catalyst with a high precious atom efficiency and excellent catalytic hydrogenation ability and selectivity.展开更多
Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use...Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1503501)the National Natural Science Foundation of China(Nos.22088101 and U21A20329)+2 种基金Program of Shanghai Academic Research Leader(No.21XD1420800)Shanghai Pilot Program for Basic Research-FuDan University 21TQ1400100(21TQ008)“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.22SG02).
文摘Highly dispersed Pd/N-doped carbon dots(Pd/NCDs)were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres(NMS).The synthesized Pd/NCDs@NMS catalyst exhibits outstanding performance in the catalytic reduction of 4-nitrophenol(4-NP),achieving a turnover frequency of 1461.8 mol·molPd^(-1)·h^(-1),with the conversion rate remaining above 80%after 11 cycles.Experiments and density functional theory calculations reveal that the NCDs significantly affect the electronic structure of Pd nanoparticles,leading to changes in the energy barriers for the adsorption of 4-NP at the Pd sites and the conversion of 4-NP reaction intermediates,which is a key factor contributing to the catalytic performance.This study offers a new strategy for synthesizing carbon-dot-modified metal-based catalysts.
基金This work is supported by the National Natural Science Foundation of China (No.51372248, No.51432009 and No.51502297), Instrument Developing Project of the Chinese Academy of Sciences (No.yz201421), the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China.
文摘A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.
基金Supported by National Natural Science Foundation of China(Grant Nos.52001142,52005228,51801218,51911530211,51905110)Young Scientists Sponsorship Program by CAST(Grant No.2022QNRC001).
文摘This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.
基金supported by the National Natural Science Foundation of China(21573031 and 21428301)the Fundamental Research Funds for the Central Universities(DUT15ZD106 and DUT15RC(4)09)~~
文摘A catalyst consisting of platinum nanoparticles on a ZIF-8 support(Pt@ZIF-8) was synthesized in a straightforward one-step procedure,by adding a nanostructured platinum sol during the formation of ZIF-8 at room temperature.Pt@ZIF-8 was highly porous and well crystallized.The Pt nanoparticles were well dispersed within the ZIF-8 support.In the hydrogenation of 1,4-butynediol,Pt@ZIF-8 exhibited high activity,excellent selectivity for 1,4-butenediol of greater than 94%,and reusability.The Pt@ZIF-8 catalyst did not require further additives.The favorable catalytic performance was attributed primarily to the modification of the ZIF-8 support by the platinum nanoparticles.
基金financially supported by the National Natural Science Foundation of China(21774041 and 51433003)the China Postdoctoral Science Foundation(2018M640681 and 2019T120632)。
文摘Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate.
基金support from the National Natural Science Foundation of China(52201255)the Natural Science Foundation of Jiangsu Province(BK20210884)the Innovation,and Entrepreneurship Program of Jiangsu Province(JSSCBS20211007).
文摘NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4).
基金supported by the National Natural Science Foundation of China(21573031 and 21428301)the Fundamental Research Funds for the Central Universities(DUT15ZD106)
文摘Spinel ferrites NiFeOsupported Ru catalysts have been prepared via a simple sol–gel route and applied for converting biomass-derived furfural to 2-methylfuran. The as-prepared catalysts were characterized by thermogravimetric analysis(TG), Nadsorption–desorption, X-ray diffraction(XRD), scanning electronic microscopy(SEM), and X-ray photoelectron spectroscopy(XPS). Results showed that the catalysts had well-dispersed Ru active sites and large surface area for calcination temperature ranging from 300 to 500 ℃. The conversion of biomass-derived furfural into 2-methylfuran was conducted over Ru/NiFeOthrough catalytic transfer hydrogenation in liquid-phase with 2-propanol as the hydrogen source. A significantly enhanced activity and increased 2-methylfuran yield have been achieved in this study. Under mild conditions(180 ℃ and 2.1 MPa N), the conversion of furfural exceeds 97% and 2-methylfuran yield was up to 83% over the catalyst containing 8 wt% Ru. After five repeated uses, the catalytic activity and the corresponding product yield remained almost unchanged. The excellent catalytic activity and recycling performance provide a broad prospects for various practical applications.
基金Supported by the Outstanding Youngs Science Foudation of Henan Province(1999)
文摘The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.
基金supported by National Key Research and Development Program of China(2021YFB4000602)National Natural Science Foundation of PR China(Nos.52071287,52072342,52271227)+3 种基金National Outstanding Youth Foundation of China(No.52125104)Natural Science Foundation of Zhejiang Province,PR China(No.LZ23E010002)Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20220456)Young Star Project of Science and Technology of Shaanxi Province(2022KJXX-43).
文摘LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nanoconfinement is effective in achieving low dehydrogenation temperature and favorable reversibility.Besides,graphene can serve as supporting materials for LiBH_(4)catalysts and also destabilize LiBH_(4)via interfacial reaction.However,graphene has never been used alone as a frame material for nanoconfining LiBH_(4).In this study,graphene microflowers with large pore volumes were prepared and used as nanoconfinement framework material for LiBH_(4),and the nanoconfinement effect of graphene was revealed.After loading 70 wt%of LiBH_(4) and mechanically compressed at 350 MPa,8.0 wt% of H2 can be released within 100 min at 320C,corresponding to the highest volumetric hydrogen storage density of 94.9 g H2 L^(-1)ever reported.Thanks to the nanoconfinement of graphene,the rate-limiting step of dehydrogenation of nanoconfined LiBH_(4) was changed and its apparent activation energy of the dehydrogenation(107.3 kJ mol^(-1))was 42%lower than that of pure LiBH_(4).Moreover,the formation of the intermediate Li_(2)B_(12)H_(12) was effectively inhibited,and the stable nanoconfined structure enhanced the reversibility of LiBH_(4).This work widens the understanding of graphene's nanoconfinement effect and provides new insights for developing high-density hydrogen storage materials.
基金supported by the National Natural Science Foundation of China(51672081)the Program of Tri-three Talents Project of Hebei Province(China,A202110002)+1 种基金the Young Top Talents Fund Program of Higher Education Institutions of Heibei Province(BJ2020009)the Project of Science and Technology Innovation Team,Tangshan(20130203D)。
文摘For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.
基金Funded by the National Natural Science Foundation of China(No.51474170)the Foundation of Shaanxi Educational Committee(No.17JK0395)the Xi’an Science and Technology Committee Program(No.GXYD9.2)。
文摘Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffractometer(XRD) and scanning electron microscope(SEM),and the electrochemical properties were investigated by an electrochemical workstation.The experimental results show that the Co_(3)O_(4) catalysts are successfully prepared on the foamed copper support by hydrothermal method,and the material’s morphology is mainly flower cluster.When the current density is 10 mA·cm^(-2),the overpotential value of the Co_(3)O_(4)/CF catalyst is 141 mV,lower than that of blank support.The electrochemical impedance(EIS) spectrum shows that the R_(ct )value of the Co_(3)O_(4)/CF catalyst decreases,and the Coulomb curves of double-layer show that the electrochemically active area of the Co_(3)O_(4)/CF catalyst efficiently increases compared with that of the blank support.Therefore,the as-obtained Co_(3)O_(4)/CF catalyst exhibits a good hydrogen evolution rate,showing great applicability potential in the catalytic electrolysis of water for hydrogen production.
基金Supported by the National High Technology Research and Development Program of China(No.2007AA03Z345)
文摘Supported Ru-based catalysts, prepared by a surfactant-stabilized colloidal method, exhibited a good selectivity to bis(4-aminocyclohexyl)methane via the hydrogenation of 4,4′-methylenedianiline. Transmission electron microscopy(TEM) and X-ray diffraction(XRD) characterization showed Ru nanoparticles were well-dispersed on activated carbon, leading to the high activity and selectivity to the product.
基金supported by Tianjin Natural Science Foundation 09JCZDJC24800
文摘The hydrogen storage properties and catalytic mechanism of FeCl-doped LiAlHwere investigated in minute details. LiAlH-2 mol% FeClsamples start to release hydrogen at 76 °C, which is 64 °C lower than that of as-received LiAlH. Isothermal desorption measurements show that the 2 mol% FeCl-doped sample releases 7.0 wt% of hydrogen within 17 min at 250 °C. At lower temperatures of 110 °C and 80 °C, the sample can release 4.4 wt% and 3 wt% of hydrogen, respectively. The apparent activation energy of LiAlH-2 mol% FeClsamples for R2 is 105.02 k J/mol, which is 67 k J/mol lower than that of pure LiAlH. The reaction between LiAlHand FeClduring ball milling was found by analyzing the X-ray diffraction results,and Fe-Al particles formed in-situ from the reaction act as the real catalyst for the dehydrogenation of LiAlH.
基金supported by the National Key Research and Development Program of China(2021YFA1500500)。
文摘The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.
基金supported by MOST of China(No.2021YFB4000603)NSFC(No.22179002 and 51971004).
文摘Sodium borohydride(NaBH_(4)) is considered as the most potential hydrogen storage material for portable proton exchange membrane fuel cells(PEMFC)because of its high theoretical hydrogen capacity.However,the slow and poor kinetic stability of hydrogen generation from NaBH_(4) hydrolysis limits its application.There are two main factors influencing the kinetics stability of hydrogen generation from NaBH_(4).One factor is that the alkaline byproducts(NaBO_(2)) of the hydrolysis reaction can increase the pH of the solution,thus inhibiting the reaction process.It mainly happens in the NaBH_(4) solution hydrolysis system.Another factor is that the monotonous increase in reaction temperature leads to uncontrollable and unpredictable hydrolysis rates in the solid NaBH_(4) hydrolysis system.This is due to the excess heat generated from this exothermic reaction in the initial reaction of NaBH_(4) hydrolysis.In this perspective,we summarize the latest research progress in hydrogen generation from NaBH_(4) and emphasize the design principles of catalysts for hydrogen generation from NaBH_(4) solution and solid state NaBH_(4).The importance of carbon as catalyst support material for NaBH_(4) hydrolysis is also highlighted.
文摘Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amount of modifier, initial concentration of reactant, pressure and temperature on conversion and enantiometric excess in a stirred autoclave and the effects of the liquid velocity, gas velocity, modifier concentration and various catalytic beds in a trickle-bed reactor. The maximum optical yields were about 50% and 60% in the two types of reactors, respectively. It was assumed that the total hydrogenation rate included the reaction rates over the unmodified and modified active sites on platinum surface and a kinetic model, which fitted the experimental data well in autoclave, was obtained. A simplified plug-flow model was proposed to describe the bed average efficiency of trickle-bed reactor.
基金supported by the National Natural Science Foundation of China (No. 50975060)the Foundation of State Key Lab of Advanced Welding Production Technology of China
文摘A new method to modify the solidification microstructure of titanium alloys, named melt hydrogenation, by adding TiH2 as additive into the melt of titanium alloys during induction skull melting process (ISM), is put forward and the refining effect of this method on the solidification microstructure of Ti-6Al-4V alloy was studied experimentally. After melt hydrogenation, the grain sizes of as-cast Ti-6Al-4V alloy decreased to 612 μm from 1,072 μm, lath-shaped α phase was also refined and fine α/β lamellar microstructure was formed when 1.0 wt.% TiH2 was added. δ-hydride was found in the X-ray diffraction (XRD) spectra of Ti-6Al-4V alloy that prepared with 1.0 wt.% TiH2 added and the δ-hydride distributes in α phase as acicular precipitations.
基金supported by the National Key R&D Program of China(2021YFA1500900)National Natural Science Foundation of China(U21A20298,22141001).
文摘Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity relationships.The traditional ML models are always difficult to identify the structural differences among the single-atom systems with different modification methods,leading to the limitation of the potential application range.Aiming to the structural properties of several typical two-dimensional MA_(2)Z_(4)-based single-atom systems(bare MA_(2)Z_(4) and metal single-atom doped/supported MA_(2)Z_(4)),an improved crystal graph convolutional neural network(CGCNN)classification model was employed,instead of the traditional machine learning regression model,to address the challenge of incompatibility in the studied systems.The CGCNN model was optimized using crystal graph representation in which the geometric configuration was divided into active layer,surface layer,and bulk layer(ASB-GCNN).Through ML and DFT calculations,five potential single-atom hydrogen evolution reaction(HER)catalysts were screened from chemical space of 600 MA_(2)Z_(4)-based materials,especially V_(1)/HfSn_(2)N_(4)(S)with high stability and activity(Δ_(GH*)is 0.06 eV).Further projected density of states(pDOS)analysis in combination with the wave function analysis of the SAC-H bond revealed that the SAC-dz^(2)orbital coincided with the H-s orbital around the energy level of−2.50 eV,and orbital analysis confirmed the formation ofσbonds.This study provides an efficient multistep screening design framework of metal single-atom catalyst for HER systems with similar two-dimensional supports but different geometric configurations.
基金supported by the National Natural Science Foundation of China(21403213,21673226,21376236,U1462121)the"Hundred Talents Programme"of the Chinese Academy of Sciences+3 种基金the"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDB17020100)National Key R&D Program of China(2016YFA0202801)Department of Science and Technology of Liaoning province under contract of 2015020086-101the Natural Science Foundation of Hunan Province(2016JJ2128)~~
文摘One of the central tasks in the field of heterogeneous catalysis is to establish structure‐function relationships for these catalysts,especially for precious metals dispersed on the sub‐nanometer scale.Here,we report the preparation of MgAl2O4‐supported Pt nanoparticles,amorphous aggregates and single atoms,and evaluate their ability to catalyze the hydrogenation of benzaldehyde.The Pt species were characterized by N2adsorption,X‐ray diffraction(XRD),aberration‐corrected transmission electron microscopy(ACTEM),CO chemisorption and in situ Fourier transform infrared spectroscopy of the chemisorbed CO,as well as by inductively coupled plasma atomic emission spectroscopy.They existed as isolated or neighboring single atoms on the MgAl2O4support,and formed amorphous Pt aggregates and then nanocrystallites with increased Pt loading.On the MgAl2O4support,single Pt atoms were highly active in the selective catalytic hydrogenation of benzaldehyde to benzyl alcohol.The terrace atoms of the Pt particles were more active but less selective;this was presumably due to their ability to form bridged carbonyl adsorbates.The MgAl2O4‐supported single‐atom Pt catalyst is a novel catalyst with a high precious atom efficiency and excellent catalytic hydrogenation ability and selectivity.
文摘Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.