A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hol...A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed,which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation(NIPS),because of the synergistic action of non-solvent induced phase separation at air gap zero.The pore size gradually decreases from outer surface layer to the intermediate layer,but increases gradually from intermediate layer to the inner surface layer.With the increase of air gap distance,the pore size near the outer surface gets smaller and a dense skin layer is formed,and the pore size gradually increases from the outer surface layer to the inner surface layer.Water permeability of the hollow fiber membrane decreases with air gap distance,the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7 m3/(m2·s·kPa)as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s,further decreases from 4.52×10-7 to 1.00×10-8 m3/(m2·s·kPa)as the air gap increases from 10 to 40 mm.Both the breaking strength and the elongation increase with the increase of air gap distance.The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s.展开更多
Lipase preparation from Aspergillus oryzae could act on ester bonds on the surface of poly (ethylene terephthalate) fibers and a possible hydrolytic product mono (2-hydroxyethyl) terephthalate was released. After ...Lipase preparation from Aspergillus oryzae could act on ester bonds on the surface of poly (ethylene terephthalate) fibers and a possible hydrolytic product mono (2-hydroxyethyl) terephthalate was released. After the iipase modification, there were more carboxyi groups on the treated poly (ethylene terephthalate) fabric surface that resulted in binding with more cationic dyes. Increased hydrophilicity and antistatic ability of poly (ethylene terephthalate) samples were found based on moisture regain, water contact angle and static half decay time.展开更多
In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic...In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic silica (SiO2) nanoparticles onto the surface to improve anti-fouling performance. A range of testing techniques including attenuated total reflection Flourier transformed infrared spectroscopy(ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), water contact angle, mechanical test,filtration and anti-fouling performance were carried out to discuss the influence of different modification conditions on the properties of the membranes. The prepared hollow fiber membranes display the significantly excellent performance when the vinyl trimethoxy silane (VTMS) concentration was 13%, the pH value of the hydrolyzate was 4 and the hydrolysis reaction time was 6 h. In particular, the hydrophilicity of modified membranes was improved effectively, resulting in the enhancement of membrane anti-fouling properties. The results of this work can be consulted for improving the anti-fouling performance of the UHMWPE microfiltration hollow fiber membrane applied in the field of water purification.展开更多
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Natural Science Foundation of Hunan Province,China
文摘A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed,which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation(NIPS),because of the synergistic action of non-solvent induced phase separation at air gap zero.The pore size gradually decreases from outer surface layer to the intermediate layer,but increases gradually from intermediate layer to the inner surface layer.With the increase of air gap distance,the pore size near the outer surface gets smaller and a dense skin layer is formed,and the pore size gradually increases from the outer surface layer to the inner surface layer.Water permeability of the hollow fiber membrane decreases with air gap distance,the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7 m3/(m2·s·kPa)as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s,further decreases from 4.52×10-7 to 1.00×10-8 m3/(m2·s·kPa)as the air gap increases from 10 to 40 mm.Both the breaking strength and the elongation increase with the increase of air gap distance.The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s.
基金Program for Changjiang Scholars and Inno■tive Research Team in University (IRT 0526)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Lipase preparation from Aspergillus oryzae could act on ester bonds on the surface of poly (ethylene terephthalate) fibers and a possible hydrolytic product mono (2-hydroxyethyl) terephthalate was released. After the iipase modification, there were more carboxyi groups on the treated poly (ethylene terephthalate) fabric surface that resulted in binding with more cationic dyes. Increased hydrophilicity and antistatic ability of poly (ethylene terephthalate) samples were found based on moisture regain, water contact angle and static half decay time.
基金financially supported by the National Natural Science Foundation of China (No. 51473031)Shanghai International S&T Cooperation Fund (No. 16160731302)。
文摘In this work, ultra-high molecular weight polyethylene (UHMWPE) microfiltration hollow fiber membranes prepared via the thermally induced phase separation (TIPS) method were modified by chemically bounding hydrophilic silica (SiO2) nanoparticles onto the surface to improve anti-fouling performance. A range of testing techniques including attenuated total reflection Flourier transformed infrared spectroscopy(ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), water contact angle, mechanical test,filtration and anti-fouling performance were carried out to discuss the influence of different modification conditions on the properties of the membranes. The prepared hollow fiber membranes display the significantly excellent performance when the vinyl trimethoxy silane (VTMS) concentration was 13%, the pH value of the hydrolyzate was 4 and the hydrolysis reaction time was 6 h. In particular, the hydrophilicity of modified membranes was improved effectively, resulting in the enhancement of membrane anti-fouling properties. The results of this work can be consulted for improving the anti-fouling performance of the UHMWPE microfiltration hollow fiber membrane applied in the field of water purification.