期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Operationally Simple Enantioselective Silane Reduction of Ketones by the [Ir(OMe)(cod)]2/Azolium Catalytic System
1
作者 Satoshi Sakaguchi Chika Nagao +1 位作者 Ryo Ichihara Shogo Matsuo 《International Journal of Organic Chemistry》 2024年第1期1-19,共19页
An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]<sub>2</sub> (cod = 1,5-cyclooctadiene) (3) as a metal ... An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]<sub>2</sub> (cod = 1,5-cyclooctadiene) (3) as a metal catalyst precursor. This reaction was driven by chiral hydroxyamide-functionalized azolium salt 2. The catalytic ESR reaction could be performed under benchtop conditions at room temperature. Treatment of 2 with 3 in THF yielded the monodentate IrCl(NHC)(cod) (NHC = N-heterocyclic carbene) complex 4 in 93% yield, herein the anionic methoxy ligand of 3 serves as an internal base that deprotonates the azolium ring of 2. The well-defined Ir complex 4 catalyzed the ESR reaction of propiophenone (6) with (EtO)<sub>2</sub>MeSiH using the pre-mixing reaction procedure. Based on this success, the catalytic ESR reaction was designed and implemented using an in situ-generated NHC/Ir catalyst derived from 2 and 3. Thus, a wide variety of aryl ketones could be reduced to the corresponding optically active alcohols in moderate to excellent stereoselectivities at room temperature without temperature control. Since the high catalytic activity of 3 was observed, we next evaluated several other transition metal catalyst precursors for the catalytic ESR reaction under the influence of 2. This evaluation revealed that Ir(acac)(cod) (acac = acetylacetonate) (28) and [IrCl(cod)]<sub>2</sub> (5) can be successfully used as metal catalyst precursors in the ESR reaction. 展开更多
关键词 Asymmetric Catalysis Enantioselective Reduction hydrosilylation reaction N-Heterocyclic Carbene IRIDIUM
下载PDF
Partially charged single-atom Ru supported on ZrO_(2) nanocrystals for highly efficient ethylene hydrosilylation with triethoxysilane 被引量:1
2
作者 Mingyan Li Shu Zhao +7 位作者 Jing Li Xiao Chen Yongjun Ji Haijun Yu Dingrong Bai Guangwen Xu Ziyi Zhong Fabing Su 《Nano Research》 SCIE EI CSCD 2022年第7期5857-5864,共8页
Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling,undesired disproportio... Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling,undesired disproportionation reactions,and energyintensive purification of products.Herein,we report a heterogeneous 0.5Ruδ+/ZrO_(2) catalyst with partially charged single-atom Ru(0.5 wt.%Ru)supported on commercial ZrO_(2) nanocrystals synthesized by the simple impregnation method followed by H2 reduction.When used in the ethylene hydrosilylation with triethoxysilane to produce the desired ethyltriethoxysilane,0.5Ruδ+/ZrO_(2) showed excellent catalytic performance with the maximum Ru atom utilization and good recyclability,even superior to homogeneous catalyst(RuCl3·H2O).Structural characterizations and density functional theory calculations reveal the atomic dispersion of the active Ru species and their unique electronic properties distinct from the homogeneous catalyst.The reaction route over this catalyst is supposed to follow the typical Chalk-Harrod mechanism.This highly efficient and supported singleatom Ru catalyst has the potential to replace the current homogeneous catalyst for a greener hydrosilylation industry. 展开更多
关键词 single-atom Ru heterogeneous catalysts hydrosilylation reaction high performance
原文传递
SILICON-CONTAINING POLY(p-ARYLENE VINYLENE)S:SYNTHESIS AND PHOTOPHYSICS
3
作者 李书宏 徐彩虹 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2012年第4期589-594,共6页
A series of new silicon-containing poly(p-arylene vinylene)s (PAVs) with anthracene units in the main chain were synthesized by hydrosilylation reaction. The introduction of organosilicon units improved the solubi... A series of new silicon-containing poly(p-arylene vinylene)s (PAVs) with anthracene units in the main chain were synthesized by hydrosilylation reaction. The introduction of organosilicon units improved the solubility of the polymers, and the π-π conjugation of polymeric chains was interrupted. These polymers behaved as blue-green light emitters with their fluorescence maximum at 447-499 nm and quantum yields in the range of 0.28-0.30 in solution. 展开更多
关键词 Poly(p-arylene vinylene)s (PAVs) hydrosilylation reaction Photophysics.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部