Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Tw...Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Two different natural fibers,hemp fiber and cotton fiber,were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance.The two types of earthen plasters were studied:one containing hemp fiber in the fine plaster(HFP)and the other containing cotton fiber in the fine plaster(CFP).Specific heat capacity,dry thermal conductivity,water vapor permeability,and sorption isotherms were investigated.The results showed that the difference between two natural fibers has much more impact on the hygric properties(water vapor permeability and sorption isotherms)of earthen plasters than on their thermal performance(specific heat capacity and dry thermal conductivity).The CFP with higher density has higher thermal conductivity than the HFP with lower density.But no significant differences of specific heat capacity were observed.Compared with HFP,CFP used in murals can reduce the rate of water transfer and prevent salt from transferring water to the mural surface.The overall findings highlight that all these features of CFP are beneficial to the long-term preservation of murals.The study of the earthen plasters in Mogao Grottoes is of general significance,and the measured properties can be used to obtain coupled heat and moisture analysis of the earthen plasters and to dissect the degradation mechanism of murals.展开更多
In Burkina Faso, where livestock farming is widely practiced, particularly in rural areas without access to electricity, solar energy offers a viable alternative due to the country’s abundant sunshine. To support pou...In Burkina Faso, where livestock farming is widely practiced, particularly in rural areas without access to electricity, solar energy offers a viable alternative due to the country’s abundant sunshine. To support poultry farmers in increasing their production, we developed a solar-powered incubator equipped with a flat-plate collector, requiring no grid electricity. This is a new approach that we want to experiment with because the incubators on the global market operate either with the electricity grid, photovoltaic, gas or oil and not a solar thermal concentrator. This solar concentrator represents the heat source of the device during the day. We plan to look for rocks with high thermal inertia in order to heat them during the day using another flat solar concentrator and then introduce them into the incubator at night to continue the incubation process. In 2022, we conducted a simulation to study temperature variation inside the incubator. In this work, we built a prototype to experimentally evaluate key hydrothermal properties such as air temperature and humidity. Furthermore, we will not introduce rocks into the incubator overnight but will let the system run overnight to see how the hygrothermal properties vary. The findings revealed temperature fluctuations from 25˚C to 65˚C, instead of the desired 36˚C to 38˚C, and humidity levels ranging from 15% to 57%, instead of the target 55% to 75%. Solutions have been proposed to enhance the system’s performance.展开更多
基金This project was supported by the National Natural Science Foundation of China(Projects No.51378412)China State Administration of Cultural Heritage(Project No.20110308).
文摘Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Two different natural fibers,hemp fiber and cotton fiber,were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance.The two types of earthen plasters were studied:one containing hemp fiber in the fine plaster(HFP)and the other containing cotton fiber in the fine plaster(CFP).Specific heat capacity,dry thermal conductivity,water vapor permeability,and sorption isotherms were investigated.The results showed that the difference between two natural fibers has much more impact on the hygric properties(water vapor permeability and sorption isotherms)of earthen plasters than on their thermal performance(specific heat capacity and dry thermal conductivity).The CFP with higher density has higher thermal conductivity than the HFP with lower density.But no significant differences of specific heat capacity were observed.Compared with HFP,CFP used in murals can reduce the rate of water transfer and prevent salt from transferring water to the mural surface.The overall findings highlight that all these features of CFP are beneficial to the long-term preservation of murals.The study of the earthen plasters in Mogao Grottoes is of general significance,and the measured properties can be used to obtain coupled heat and moisture analysis of the earthen plasters and to dissect the degradation mechanism of murals.
基金Thanks to all those who contributed to this paper in sample collection,writing and proofreading.This work was supported by the National Natural Science Foundation of China under grant number 51878140 and 51678129the China National Key RED Program during the 13th Five-year Plan Period under the grant number 2019YFC1520900the Zhong Ying Young Scholar Project of Southeast University.
文摘In Burkina Faso, where livestock farming is widely practiced, particularly in rural areas without access to electricity, solar energy offers a viable alternative due to the country’s abundant sunshine. To support poultry farmers in increasing their production, we developed a solar-powered incubator equipped with a flat-plate collector, requiring no grid electricity. This is a new approach that we want to experiment with because the incubators on the global market operate either with the electricity grid, photovoltaic, gas or oil and not a solar thermal concentrator. This solar concentrator represents the heat source of the device during the day. We plan to look for rocks with high thermal inertia in order to heat them during the day using another flat solar concentrator and then introduce them into the incubator at night to continue the incubation process. In 2022, we conducted a simulation to study temperature variation inside the incubator. In this work, we built a prototype to experimentally evaluate key hydrothermal properties such as air temperature and humidity. Furthermore, we will not introduce rocks into the incubator overnight but will let the system run overnight to see how the hygrothermal properties vary. The findings revealed temperature fluctuations from 25˚C to 65˚C, instead of the desired 36˚C to 38˚C, and humidity levels ranging from 15% to 57%, instead of the target 55% to 75%. Solutions have been proposed to enhance the system’s performance.