期刊文献+
共找到140,996篇文章
< 1 2 250 >
每页显示 20 50 100
Evidence for Positive Effects of Date Extract That Attenuates Thermal Hyperalgesia in a Diabetic Rat Model of Neuropathic Pain
1
作者 Mohammad Shabani Nasser Zangiabadi Majid Asadi-Shekaari 《Neuroscience & Medicine》 2013年第1期16-22,共7页
Aim: Diabetic neuropathic pain is one of the pains which hardly respond to pharmaceutical treat. Today, various chemical and herbal compounds have been used to reduce pain. The aim of this study is to compare the effe... Aim: Diabetic neuropathic pain is one of the pains which hardly respond to pharmaceutical treat. Today, various chemical and herbal compounds have been used to reduce pain. The aim of this study is to compare the effect of date extract and melatonin in preventing pain in diabetic rats.Method: To study hyperalgesia response and to compare the effect of date extract and melatonin in preventing pain, hot plate and tail flick tests were used. After prescribing single dose of streptozotocin to rats and approving their diabetes, treatment rats received date extract (4ml/kg/day) or melatonin [10 mg/kg/day, intraperitoneally (i.p.)] for a period of 6 weeks. At the end of the sixth week, control and treated rats were examined by thermal pain response and explorative activity tests.Results: According to hot plate results, response time to thermal pain in treated group showed a significant decrease in comparison with the control group (P 0.01). Prescription of date extract increased response time to thermal pain in comparison with treated group (P 0.01), so that response time approximated to control group. Although melatonin approximated to the response time to control group, the significant difference was not observed among melatonin receivers and other groups. In the assessment of diabetic neuropathy on the explorative activity of rats in an open field behavioral test, total distance moved and rearing frequency were significantly decreased, while administration of date extract did also improve motor deficits induced by STZ. Conclusions:Findings of this study showed that date extract decreased thermal hyperalgesia and can prevent pain resulted from diabetic neuropathy. 展开更多
关键词 DATE EXTRACT DIABETIC MELATONIN NEUROPATHIC Pain thermal hyperalgesia
下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network
2
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search Algorithm
下载PDF
Development status and prospect of underground thermal energy storage technology 被引量:1
3
作者 Ying-nan Zhang Yan-guang Liu +3 位作者 Kai Bian Guo-qiang Zhou Xin Wang Mei-hua Wei 《Journal of Groundwater Science and Engineering》 2024年第1期92-108,共17页
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te... Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES. 展开更多
关键词 Aquifer thermal energy storage Borehole thermal energy storage Cavern thermal energy storage thermal energy storage technology Benefit evaluation
下载PDF
Oxidation Resistance of Form-stable Hightemperature Phase Change Thermal Energy Storage Materials Doped by Impregnated Graphite
4
作者 LI Baorang DAI Jianhuan +2 位作者 ZHANG Wei LIU Xiangchen YANG Liu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期1-12,共12页
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change... We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance. 展开更多
关键词 phase change materials GRAPHITE impregnation method oxidation sintering thermal analysis
下载PDF
Modeling Thermophysical Properties of Hybrid Nanofluids:Foundational Research for Future Photovoltaic Thermal Applications
5
作者 Chakar Khadija El Mouden Mahmoud Hajjaji Abdelowahed 《Fluid Dynamics & Materials Processing》 2025年第1期61-70,共10页
The primary objective of this study is to develop an innovative theoretical model to accurately predict the thermophysicalproperties of hybrid nanofluids designed to enhance cooling in solar panel applications.This re... The primary objective of this study is to develop an innovative theoretical model to accurately predict the thermophysicalproperties of hybrid nanofluids designed to enhance cooling in solar panel applications.This researchlays the groundwork for our future studies,which will focus on photovoltaic thermal applications.These nanofluidsconsist of water and nanoparticles of alumina(Al_(2)O_(3)),titanium dioxide(TiO_(2)),and copper(Cu),exploringvolumetric concentrations ranging from 0%to 4%for each type of nanoparticle,and up to 10%for total mixtures.The developed model accounts for complex interactions between the nanoparticles and the base fluid,as well assynergistic effects resulting from the coexistence of different nanoparticles.Detailed simulations have shownexceptional agreement with experimental results,reinforcing the credibility of our approach in accurately capturingthe thermophysical behavior of these hybrid nanofluids.Based on these results,our study proposes significantadvancements in the design and optimization of nanofluids for cooling applications in solar panels.These developmentsare crucial for improving the efficiency of solar installations by mitigating overheating effects,providinga solid foundation for practical applications in this rapidly evolving field. 展开更多
关键词 NANOPARTICLE thermophysical properties solar panel thermal conductivity specific heat
下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
6
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites Mechanical properties thermal properties Mechanical stirrer Sonication
下载PDF
Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft 被引量:1
7
作者 Liu Liu Kangli Bao +4 位作者 Jianchao Feng Xiaofei Zhu Haoyu Wang Xiaofeng Zhang Jun Lin 《Astronomical Techniques and Instruments》 CSCD 2024年第1期52-61,共10页
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat... In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs. 展开更多
关键词 Solar Close Observations and Proximity Experiments Adaptive thermal control method thermal field planning method Pumped liquid cooling system Advanced thermal management system
下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
8
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
Simulation and Optimization of Energy Efficiency and Total Enthalpy Analysis of Sand Based Packed Bed Solar Thermal Energy Storage
9
作者 Matiewos Mekonen Abera Venkata Ramayya Ancha +3 位作者 Balewgize Amare L.Syam Sundar Kotturu V.V.Chandra Mouli Sambasivam Sangaraju 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1043-1070,共28页
This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis h... This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage.Parameters that control this optimization are storage height,storage diameter,heat transfer fluid flow rate,and sand bed particle size.The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method.Accordingly,the optimized parameters of storage are:storage height of 1.4m,storage diameter of 0.4 m,flow rate of 0.02 kg/s,and sand particle size 12 mm.Among these parameters,the storage diameter result is the highest influenced optimized parameter of the thermal storage fromthe ANOVA analysis.For nominal packed bed thermal storage,the charging time needed to attain about 520 K temperature is more than 3500 s,while it needs only about 2000 s for the optimized storage which is very significant difference.Average charging energy efficiency of the optimized is greater than the nominal and previous concrete-based storage by 13.7%,and 13.1%,respectively in the charging time of 2700 s. 展开更多
关键词 OPTIMIZATION solar thermal energy storage Taguchimethod COMSOLmultiphysics packed bed thermal storage charging time
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
10
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery Blade battery thermal runaway Internal thermal runaway propagation
下载PDF
Personal Thermal Management by Radiative Cooling and Heating 被引量:2
11
作者 Shidong Xue Guanghan Huang +3 位作者 Qing Chen Xungai Wang Jintu Fan Dahua Shou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期225-267,共43页
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea... Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications. 展开更多
关键词 Personal thermal management Radiative cooling and heating thermal comfort Dynamic thermoregulation
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
12
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Leakage Proof,Flame-Retardant,and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting 被引量:2
13
作者 Yuhui Chen Yang Meng +7 位作者 Jiangyu Zhang Yuhui Xie Hua Guo Mukun He Xuetao Shi Yi Mei Xinxin Sheng Delong Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期99-120,共22页
Phase change materials(PCMs)offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization.However,for organic solid-liquid PCMs,issues such as leakage,low th... Phase change materials(PCMs)offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization.However,for organic solid-liquid PCMs,issues such as leakage,low thermal conductivity,lack of efficient solar-thermal media,and flamma-bility have constrained their broad applications.Herein,we present an innova-tive class of versatile composite phase change materials(CPCMs)developed through a facile and environmentally friendly synthesis approach,leveraging the inherent anisotropy and unidirectional porosity of wood aerogel(nanowood)to support polyethylene glycol(PEG).The wood modification process involves the incorporation of phytic acid(PA)and MXene hybrid structure through an evaporation-induced assembly method,which could impart non-leaking PEG filling while concurrently facilitating thermal conduction,light absorption,and flame-retardant.Consequently,the as-prepared wood-based CPCMs showcase enhanced thermal conductivity(0.82 W m^(-1)K^(-1),about 4.6 times than PEG)as well as high latent heat of 135.5 kJ kg^(-1)(91.5%encapsula-tion)with thermal durability and stability throughout at least 200 heating and cooling cycles,featuring dramatic solar-thermal conversion efficiency up to 98.58%.In addition,with the synergistic effect of phytic acid and MXene,the flame-retardant performance of the CPCMs has been significantly enhanced,showing a self-extinguishing behavior.Moreover,the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs,relieving contemporary health hazards associated with electromagnetic waves.Overall,we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs,showcasing the operational principle through a proof-of-concept prototype system. 展开更多
关键词 Wood PCMs MXene Solar thermal storage and conversion FLAME-RETARDANT Electromagnetic shielding
下载PDF
Deterioration of equivalent thermal conductivity of granite subjected to heating-cooling treatment 被引量:1
14
作者 Mohua Bu Peng Zhang +3 位作者 Pingye Guo Jiamin Wang Zhaolong Luan Xin Jin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4229-4246,共18页
Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The... Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The transient hot-wire technique was used to determine the equivalent thermal conductivity(ETC)of the granite before and after treatment.The deterioration mechanism of ETC is analyzed from the meso-perspective.Finally,the numerical model is used to quantitatively study the impact of cooling rate on the microcrack propagation and heat conduction characteristics of granite.The results show that the ETC of granite is not only related to the heating temperature,but also affected by the cooling rate.The ETC of granite decreases nonlinearly with increasing heating temperature.A faster cooling rate causes a greater decrease in ETC at the same heating temperature.The higher the heating temperature,the stronger the influence of cooling rate on ETC.The main explanation for the decrease in ETC of granite is the increase in porosity and microcrack density produced by the formation and propagation of pore structure and microcracks during heating and cooling.Further analysis displays that the damage of granite at the heating stage is induced by the difference in thermal expansion and elastic properties of mineral particles.At the cooling stage,the faster cooling rate causes a higher temperature gradient,which in turn produces greater thermal stress.As a result,it not only causes new cracks in the granite,but also aggravates the damage at the heating stage,which induces a further decrease in the heat conduction performance of granite,and this scenario is more obvious at higher temperatures. 展开更多
关键词 Equivalent thermal conductivity(ETC) GRANITE Heating-cooling treatment Pore structure MICROCRACK Grain-based model
下载PDF
Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring 被引量:1
15
作者 Yuxuan Li Lihua Jiang +5 位作者 Ningjie Zhang Zesen Wei Wenxin Mei Qiangling Duan Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期74-86,共13页
Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the curre... Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the current fire safety situation of LIBs.In this work,we report an early warning method of TR with online electrochemical impedance spectroscopy(EIS)monitoring,which overcomes the shortcomings of warning methods based on traditional signals such as temperature,gas,and pressure with obvious delay and high cost.With in-situ data acquisition through accelerating rate calorimeter(ARC)-EIS test,the crucial features of TR were extracted using the RReliefF algorithm.TR mechanisms corresponding to the features at specific frequencies were analyzed.Finally,a three-level warning strategy for single battery,series module,and parallel module was formulated,which can successfully send out an early warning signal ahead of the self-heating temperature of battery under thermal abuse condition.The technology can provide a reliable basis for the timely intervention of battery thermal management and fire protection systems and is expected to be applied to electric vehicles and energy storage devices to realize early warning and improve battery safety. 展开更多
关键词 Online EIS measurement Lithium-ion batterysafety Multistage thermal runaway early warning SENSITIVITYANALYSIS
下载PDF
Thermo-hydro-mechanical (THM) coupled simulation of the land subsidence due to aquifer thermal energy storage (ATES) system in soft soils 被引量:1
16
作者 Yang Wang Fengshou Zhang Fang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1952-1966,共15页
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o... Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils. 展开更多
关键词 Aquifer thermal energy storage(ATES) Land subsidence TOUGH-FLAC3D Thermo-elastoplastic constitutive model
下载PDF
Intraplantar Injection of Monosodium Iodoacetate Produces Hyperalgesia in Rats and the Mechanism Underlying the Effect
17
作者 Sha-Sha Li Tian-Yun Yao +2 位作者 Dan Wu Li-Ting Nan Shuang-Quan Yu 《Journal of Biosciences and Medicines》 2024年第6期244-254,共11页
Objective: To observe the effect of intraplantar injection of monosodium iodoacetate (MIA) on pain perception in rats and to investigate the role of transient receptor potential vanilloid type 1 (TRPV1) in the effect.... Objective: To observe the effect of intraplantar injection of monosodium iodoacetate (MIA) on pain perception in rats and to investigate the role of transient receptor potential vanilloid type 1 (TRPV1) in the effect. Methods: Adult male Wistar rats were used in the experiment. 1) MIA was injected subcutaneously into the right hindpaw of rats, the low, medium, and high doses of MIA were 0.11, 0.33, and 1 mg, respectively, then the changes of paw withdrawal thermal latency, paw withdrawal mechanical threshold, and dynamic weight bearing within 4 hours after MIA injection were measured. 2) Capsazepine (TRPV1 antagonist, 30 μg) was injected subcutaneously into the right hindpaw of rats at 2 hours after intraplantar injection of MIA (1 mg), then the changes of paw withdrawal thermal latency, paw withdrawal mechanical threshold, and dynamic weight bearing within 1 hour after capsazepine injection were measured. Results: 1) The paw withdrawal thermal latency, paw withdrawal mechanical threshold, and dynamic weight bearing decreased after intraplantar injection of MIA in rats and the effect lasted for at least 4 hours. 2) The MIA-induced reduction in paw withdrawal thermal latency, paw withdrawal mechanical threshold, and dynamic weight bearing were significantly alleviated after intraplantar injection of capsazepine in rats. Conclusion: Intraplantar injection of MIA can produce thermal pain, mechanical pain, and spontaneous pain for more than 4 hours, which may be due to the TRPV1 activation caused by MIA. 展开更多
关键词 TRPV1 Monosodium Iodoacetate CAPSAZEPINE hyperalgesia
下载PDF
Influence of Surgical Incision Size and Interleukin 6 in the Occurrence of Postoperative Hyperalgesia in Lubumbashi/DR Congo
18
作者 Christian Tshisuz-Nawej Nadine Kibwe +11 位作者 Felly Kazadi Berenice Kamba Ruffin Nyembo Cédric Sangwa Patient Kayoyo Eric Kasamba Sebastien Mbuyi Claude Mwamba-Mulumba Berthe Barahyga Adelin Muganza Iteke Fefe Willy Arung 《Open Journal of Anesthesiology》 2024年第11期232-247,共16页
Background: It appeared that the conjunction inflammation and nerve damage (caused by surgery) generate the hyperalgesic component. But the probability of predicting hyperalgesia from the size of the surgical incision... Background: It appeared that the conjunction inflammation and nerve damage (caused by surgery) generate the hyperalgesic component. But the probability of predicting hyperalgesia from the size of the surgical incision and/or the resulting inflammatory reaction is not well elucidated. This survey aims to study the influence of the size of the surgical incision and the resulting inflammatory reaction (interleukin 6 levels) in the occurrence of postoperative hyperalgesia in the population of Lubumbashi. Methods: The present study was descriptive cross-sectional. The data collection was prospective over 5 months, from February 1, 2024 to June 30, 2024. This study included any patient over the age of 18 who underwent surgery under general anesthesia. We used indirect signs to define hyperalgesia: higher (ENS > 6) and prolonged pain, postoperative overconsumption of morphine. Results: During our survey, we collected 48 operated patients who had severe postoperative pain, 16 of whom had hyperalgesia, i.e. a prevalence of hyperalgesia of 33.33%. The size of the incision most represented was between ≥20 and i.e. 62.50%. The type of surgery most affected by hyperalgesia was laparotomy. We observed an elevation of IL6 in 87.50% of patients. The largest elevation was 8.91 times the preoperative value and the smallest was 1.04 times. Pre- and postoperative IL6 levels were not associated with hyperalgesia (p = 0.265). Only the size of the surgical incision was associated with hyperalgesia (p = 0.04). Incision size values between [20 - 30] cm were those associated with hyperalgesia (p = 0.027). The model shows that making an incision greater than or equal to 20 cm increases the patient’s risk of developing hyperalgesia by more than 7.222 times and this is statistically significant (p = 0.004). Conclusion: According to this survey, the size of the surgical incision was associated with postoperative hyperalgesia and a size of more than 20 cm increases the patient’s risk of developing hyperalgesia by more than 7.222 times. 展开更多
关键词 Postoperative hyperalgesia Prevalence Surgical Incision Size Interleukin 6
下载PDF
Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment
19
作者 Cunning Wang Xingxun Li +2 位作者 Qingping Li Guangjin Chen Changyu Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期176-188,共13页
The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The th... The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The thermal conductivity of hydrate is of great significance for the hydrate-related field,such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines.In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment,the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study.Firstly,experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed.Secondly,the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature,porosity,hydrate saturation,water saturation,thermal conductivity of porous medium,phase change,and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed.Thirdly,the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed.The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency.Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment. 展开更多
关键词 HYDRATE thermal conductivity Hydrate-bearing sediment Preparation method Effective thermal conductivity MODEL
下载PDF
A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries
20
作者 Ji-Xiang Wang Christopher Salmean +5 位作者 Jiaxin Li Chaojie Lei Jun Li Mingliang Zhong Bo Qi Yufeng Mao 《Nano Materials Science》 EI CAS CSCD 2024年第4期443-455,共13页
In response to thermal runaway(TR)of electric vehicles,recent attention has been focused on mitigation strategies such as efficient heat dredging in battery thermal management.Thermal management with particular focus ... In response to thermal runaway(TR)of electric vehicles,recent attention has been focused on mitigation strategies such as efficient heat dredging in battery thermal management.Thermal management with particular focus on battery cooling has been becoming increasingly significant.TR usually happened when an electric vehicle is unpowered and charged.In this state,traditional active battery cooling schemes are disabled,which can easily lead to dangerous incidents due to loss of cooling ability,and advanced passive cooling strategies are therefore gaining importance.Herein,we developed an enhanced thermal radiation material,consisting of~1μm thick multilayered nano-sheet graphene film coated upon the heat dissipation surface,thereby enhancing thermal radiation in the nanoscale.The surface was characterized on the nanoscale,and tested in a battery-cooling scenario.We found that the graphene-based coating's spectral emissivity is between 91% and 95% in the mid-infrared region,and thermal experiments consequently illustrated that graphene-based radiative cooling yielded up to15.1% temperature reduction when compared to the uncoated analogue.Using the novel graphene surface to augment a heat pipe,the temperature reduction can be further enlarged to 25.6%.The new material may contribute to transportation safety,global warming mitigation and carbon neutralization. 展开更多
关键词 Battery thermal management Nano-sheet graphene Functional material Passive cooling thermal radiation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部