The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production ...The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method.展开更多
As the science and technology develop,crime methods and scenes have become increasingly complex and diverse.Trace evidence analysis has become amore and more important criminal investigation technology and liquid is t...As the science and technology develop,crime methods and scenes have become increasingly complex and diverse.Trace evidence analysis has become amore and more important criminal investigation technology and liquid is the main form of trace evidence.Food can provide not only energy,but clues to solve crimes.In this study,we build a hyperspectral imaging system to detect liquid residue traces,including apple juice,coffee,cola,milk and tea,on denims with light,middle and dark colors.The obtained hyperspectral images are first subjected to spectral calibration and hyperspectral data pretreatment.Subsequently,Partial Least Squares(PLS)is applied to select the informative wavelengths from the preprocessed spectra.For modeling phase,the combination optimal strategy,support vector machine(SVM)combined with random forest(RF),is developed to establish classification models.The experimental results demonstrate that the combination optimal model can achieve TPR,FPR,Precision,Recall,F1,and AUC of 83.5%,2.30%,79.7%,83.5%,81.6%,and 94.7%for classifying fabrics contaminated by various food residuals.With respect to the classification of liquid and fabric types,the combination optimalmodel also yields satisfactory classification performance.In future work,wewill expand the types of liquid,and make appropriate adjustment to algorithms for improving the robustness of classification models.This research may play a positive role in the construction of a harmonious society.展开更多
Near infrared (NIR) hyperspectral imaging measurement of sugar content in peach was introauced. NIR spectral images (650~1 000 nm, resolution: 2 nm) of peach samples were captured with developed hyperspectral im...Near infrared (NIR) hyperspectral imaging measurement of sugar content in peach was introauced. NIR spectral images (650~1 000 nm, resolution: 2 nm) of peach samples were captured with developed hyperspectral imaging setup. Partial least square (PLS) regression prediction model was developed to estimate the sugar content in peach; step-wise backward method was utilized to determine optimal wavelength subsets. Experimental results show that the calibration model with optimal wavelength subsets has a correlation coefficient of prediction of 0.97 and a standard error of prediction of 0.19, the prediction accuracy is higher than the calibration model applied over the whole wavelength, which proves that variable selection plays an important role in improving the prediction accuracy of PLS regression model.展开更多
In order to find an effective method of detecting thrips defect on green-peel citrus, a defect segmentation method was developed using a single threshold value based on combination of characteristic wavelengths princi...In order to find an effective method of detecting thrips defect on green-peel citrus, a defect segmentation method was developed using a single threshold value based on combination of characteristic wavelengths principal component analysis (PCA) and B-spline lighting correction method in this study. At first, four characteristic wavelengths (523, 587, 700 and 768 nm) were obtained using PCA of Vis-NIR (visible and near-infrared) bands and analysis of weighting coefficients; secondarily, PCA was performed using characteristic wavelengths and the second principal component (PC2) was selected to classify images; then, B-spline lighting correction method was proposed to overcome the influence of lighting non-uniform on citrus when thrips defect was segmented; finally, thrips defect on citrus was extracted by global threshold segmentation and morphological image processing. The experimental results show that thrips defect in citrus can be detected with an accuracy of 96.5% by characteristic wavelengths PCA and B-spline lighting correction method. This study shows that thrips defect on green-peel citrus can be effectively identified using hyperspectral imaging technology.展开更多
Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the ch...Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution,which signicantly affects the absorption and reflection of light,the spectral feature is proved to be important for leukocytes classication and identication.This paper proposes an accurate identication method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging(HSI)technology which combines the spectral information.The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm.Then,the spectral features are extracted and combined with the spatial features.Based on this,the support vector machine(SVM)is applied for classication ofve types of leukocytes and abnormal leukocytes.Compared with different classication methods,the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes,improving the accuracy in the classication and identication of leukocytes.This paper only selects one subtype of ALL for test,and the proposed method can be applied for detection of other leukemia in the future.展开更多
Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent yea...Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent years,hyperspectral imaging technology has shown great potential in detecting and differentiating plant diseases,pests and some other stresses at the leaf level.However,the lack of studies at canopy level hampers the detection of tea plant stresses at a larger scale.In this study,based on the canopy-level hyperspectral imaging data,the methods for identifying and differentiating the three commonly occurred tea stresses(i.e.,the tea leafhopper,anthrax and sun burn)were studied.To account for the complexity of the canopy scenario,a stepwise detecting strategy was proposed that includes the process of background removal,identification of damaged areas and discrimination of stresses.Firstly,combining the successive projection algorithm(SPA)spectral analysis and K-means cluster analysis,the background and overexposed non-plant regions were removed from the image.Then,a rigorous sensitivity analysis and optimization were performed on various forms of spectral features,which yielded optimal features for detecting damaged areas(i.e.,YSV,Area,GI,CARI and NBNDVI)and optimal features for stresses discrimination(i.e.,MCARI,CI,LCI,RARS,TCI and VOG).Based on this information,the models for identifying damaged areas and those models for discriminating different stresses were established using K-nearest neighbor(KNN),Random Forest(RF)and Fisher discriminant analysis.The identification model achieved an accuracy over 95%,and the discrimination model achieved an accuracy over 93%for all stresses.The results suggested the feasibility of stress detection and differentiation using canopy-level hyperspectral imaging techniques,and indicated the potential for its extension over large areas.展开更多
In order to explore the spectral features and sensitive wave band of wheat leaf,we establish a quantitative relationship model between wheat chlorophyll content and spectral features to promote the application of hype...In order to explore the spectral features and sensitive wave band of wheat leaf,we establish a quantitative relationship model between wheat chlorophyll content and spectral features to promote the application of hyperspectral technology in precise wheat fertilization and fast,non-destructive growth monitoring.Using the relational analysis,we analyze the relationship between chlorophyll content and spectral reflectance or the first derivative,and establish the chlorophyll content monitoring model.By selection and verification,the best estimation models for wheat chlorophyll content are as follows:SPAD = 36.75 + 188.168R387,SPAD =2094.242R'7153+ 112646.744 R'7152-1.561E7 R'715+42.991.The two models can well estimate the SPAD value of wheat leaf,and comparatively speaking,the SPAD estimation model based on wave band R387 has greater accuracy.展开更多
In this study, fresh pork tenderness, drip-loss, pH value and color parameters ( CIE, a * , b * and L * values) were simultaneously predicted using hyperspectral scattering imaging (HSI) technique. The hyperspe...In this study, fresh pork tenderness, drip-loss, pH value and color parameters ( CIE, a * , b * and L * values) were simultaneously predicted using hyperspectral scattering imaging (HSI) technique. The hyperspectral scattering images of dO fresh pork samples were collected at the wavelength of 400 -I 100 nm, and the scattering profiles were fitted via Lorontzian distribution ( LD ) function to give three parameters a ( asymptotic value ), b (peak value ) and c ( full width at b/2). Stepwise discrimination was performed to determine the optimal wavelengths combinations. The LD parameters combinations (a, b and c) of optimal wavelengths were used to establish multi-linear regression (MLR) models to predict the pork attributes. The models were able to predict pork with high correlation coefficients of 0.92 for drip-loss, 0.94, 0.92 and 0.98 respectively for color parameters ( a * , b* and L * ), and for tenderness and pH value the models gave the correlation coefficients of 0.69 and 0.76, respectively. These results showed that the hyperspectral scattering technique was capable of predicting quality parameters of perk. The study provides an efficient means for rapid and nondestructive determination of pork quality simultaneously.展开更多
This study was undertaken to investigate the feasibility of near-infrared(NIR) hyperspectral imaging(1 000–2 500 nm) for non-destructive and quantitative prediction of protein content in peanut kernels. Partial least...This study was undertaken to investigate the feasibility of near-infrared(NIR) hyperspectral imaging(1 000–2 500 nm) for non-destructive and quantitative prediction of protein content in peanut kernels. Partial least squares regression(PLSR) calibration model was established between the spectral data extracted from the hyperspectral images and the reference measured protein content values, with the coefficient of determination of prediction(R_P^2) of 0.885 and root mean square error of prediction(RMSEP) of 0.465%.Regression coefficients(RC) from PLSR analysis were used to identify the most essential wavelengths that had the greatest influence on changes in the protein content. Eight optimal wavelengths were selected by RC and its corresponding simplified RC-PLSR prediction model was also obtained, showing better performance with a higher R_P^2 of 0.870 and a lower RMSEP of 0.494%. The results indicate that hyperspectral imaging with PLSR analysis can be used as a rapid and non-destructive method for predicting protein content in peanut.展开更多
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara...The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.展开更多
Hyperspectral imaging(HSI)is a powerful tool widely used for various scientific and industrial applications due to its ability to provide rich spatiospectral information.However,in exchange for multiplex spectral info...Hyperspectral imaging(HSI)is a powerful tool widely used for various scientific and industrial applications due to its ability to provide rich spatiospectral information.However,in exchange for multiplex spectral information,its image acquisition rate is lower than that of conventional imaging,with up to a few colors.In particular,HSI in the infrared region and using nonlinear optical processes is impractically slow because the three-dimensional(3D)data cube must be scanned in a point-by-point manner.In this study,we demonstrate a framework to improve the spectral image acquisition rate of HSI by integrating time-domain HSI and compressed sensing.Specifically,we simulated broadband coherent Raman imaging at a record high frame rate of 25 frames per second(fps)with 100 pixels×100 pixels,which is 10×faster than that of previous work,based on an experimentally feasible sampling scheme utilizing 3D Lissajous scanning.展开更多
In this research,a new method based on the hyperspectral imaging for searching the best decocting time of sun dried ginseng is reported.The spectral images at diferent decocting time of test sample have been taken by ...In this research,a new method based on the hyperspectral imaging for searching the best decocting time of sun dried ginseng is reported.The spectral images at diferent decocting time of test sample have been taken by the st aring hyperspectral fAuorescence imaging systen and the solubility of active ingredients have been discussed by analyzing the changes on the spectral.curves.The spectr al range of the system is 400-720nm and the spectral resolution is 5nm.In the decocting process,the active ingredients of nonsoaked ginseng was dissolved in the tissue fluid at first,and reached equilibrium condition at last after the precipitation-dissolution reciprocating process of boiling.At last,the experiment al results show that the best decoction time of sun dried ginseng is about 60 min after boiling.展开更多
Objective:We applied hyperspectral imaging(HSI)system to distinguish early caries from soundand pigmented areas.It will provide a theoretical basis and technical support,for research anddevelopment of an instrument th...Objective:We applied hyperspectral imaging(HSI)system to distinguish early caries from soundand pigmented areas.It will provide a theoretical basis and technical support,for research anddevelopment of an instrument that could be used for screening and detection of early dentalcaries.Methods:Eighteen extracted human teeth(molars and premolars),with varying degrees ofnatural pathology and no degree of decay involving dentin were obtained.HSI system with awavelength range from 400 to 1000nm was used to obtain images of all 18 teeth containingsound,carious and pigmented areas.We compared the spectra of the wavebands at both 500 nmand 780 nm from the different tooth states,and the reflectance diference bet ween sound versuscarious lesions and sound versus pigmented areas,respectively.Results:There was a slight diference in refectance bet ween carious areas and pigmented areas at500 nm.A substantial difference was additionally noted in refectance bet ween carious areas andpigmented areas at 780 nm.Conclusion:The results have shown that the interference of tooth surface pigment can be elim-inated in the near-infrared(NIR)waveband,and the caries can be effectively identifed from the pigmented areas.Thus,it could be used to detect carious areas of teeth in place of the traditionalvisual inspection method or white light endoscopy.Clinical significance:The NIR difused light signal enables the identification of early caries frompigment and other interference,providing a reasonable detection tool for early detection andearly treatment of teeth diseases.展开更多
cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current ...cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).展开更多
Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat...Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.展开更多
The growth characteristics of Aspergillus parasitic us incubated on two culture media were ex-amined using shortwave infrared(SWIR,1000-2500 nm)hyperspectral imaging(HSI)in this work.HSI images of the A.parasiticus co...The growth characteristics of Aspergillus parasitic us incubated on two culture media were ex-amined using shortwave infrared(SWIR,1000-2500 nm)hyperspectral imaging(HSI)in this work.HSI images of the A.parasiticus colonies growing on rose bengal medium(RBM)and maize agar medium(MAM)were recorded daily for 6 days.The growth phases of A.parasiticus were indicated through the pixel number and average spectra of colonies.On score plot of the first principal component(PC1)and PC2,four growth zones with varying mycelium densities were identified.Eight characteristic wavelengths(1095,1145,1195,1279,1442,1655,1834 and 1929 nm)were selected from PC1 loading,average spectra of each colony as well as each growth zone.F urthermore,support vector machine(S VM)classifier based on the eight wavelengths was built,and the classification accuracies for the four zones(from outer to inner zones)on the colonies on RBM were 99.77%,9935%,99.75%and 99.60%and 99.77%,9939%,99.31%and 98.22%for colonies on MAM.In addition,a new score plot of PC2 and PC3 was used to differ-entiate the colonies incubated on RBM and MAM for 6 days.Then characteristic wavelengths of 1067,1195,1279,1369,1459,1694,1834 and 1929 nm were selected from the loading of PC2 and PCg.Based on them,a new SVM model was developed to diferentiate colonies on RBM and MAM with accuracy of 100.00%and 9999%,respectively.In conclusion,SWIR hyperspectral image is a powerful tool for evaluation of growth characteristics of A.parasiticus incubated in diferent culture media.展开更多
Hyperspectral imaging technique is known as a promising non-destructive way for detecting plants diseases and pests.In most previous studies,the utilization of the whole spectrum or a large number of bands as well as ...Hyperspectral imaging technique is known as a promising non-destructive way for detecting plants diseases and pests.In most previous studies,the utilization of the whole spectrum or a large number of bands as well as the complexity of model structure severely hampers the application of the technique in practice.If a detection system can be established with a few bands and a relatively simple logic,it would be of great significance for application.This study established a method for identifying and discriminating three commonly occurring diseases and pests of wheat,i.e.,powdery mildew,yellow rust and aphid with a few specific bands.Through a comprehensive spectral analysis,only three bands at 570,680 and 750 nm were selected.A novel vegetation index namely Ratio Triangular Vegetation Index(RTVI)was developed for detecting anomalous areas on leaves.Then,the Support Vector Machine(SVM)method was applied to construct the discrimination model based on the spectral ratio analysis.The validating results suggested that the proposed method with only three spectral bands achieved a promising accuracy with the Overall Accuracy(OA)of 83%.With three bands from the hyperspectral imaging data,the three wheat diseases and pests were successfully detected and discriminated.A stepwise strategy including background removal,damage lesions recognition and stresses discrimination was proposed.The present work can provide a basis for the design of low cost and smart instruments for disease and pest detection.展开更多
To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Inf...To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Influence factors for hyperspectral data collection for milk samples were firstly researched,including height of sample,bottom color and sample filled up container or not.Pretreatment methods and variable selection algorithms were applied into original spectral data.Rapid detection models were built based on support vector machine method(SVM).Finally,standard normalized variable(SNV)-competitive adaptive reweighted sampling(CARS)and SVM model was chosen in this paper.The accuracies of calibration set and testing set were 0.97 and 0.97,respectively.Kappa coefficient of the model was 0.93.It could be seen that hyperspectral imaging technology could be used to detect for potassium sorbate in milk.Meanwhile,it also provided methodological supports for the rapid detection of other preservatives in milk.展开更多
Peach aphid is a common pest and hard to detect.This study employs hyperspectral imaging technology to identify early damage in green cabbage caused by peach aphid.Through principal component transformation and multip...Peach aphid is a common pest and hard to detect.This study employs hyperspectral imaging technology to identify early damage in green cabbage caused by peach aphid.Through principal component transformation and multiple linear regression analysis,the correlation relation between spectral characteristics and infestation stage is analyzed.Then,four characteristic wavelength selection methods are compared and optimal characteristic wavelengths subset is determined to be input for modelling.One linear algorithm and two nonlinear modelling algorithms are compared.Finally,support vector machine(SVM)model based on the characteristic wavelengths selected by multi-cluster feature selection(MCFS)acquires the highest identification accuracy,which is 98.97%.These results indicate that hyperspectral imaging technology have the ability to identify early peach aphid infestation stages on green cabbages.展开更多
Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixi...Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.展开更多
基金supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D.Program(PHD/0225/2561)the Faculty of Engineering,Kamphaeng Saen Campus,Kasetsart University,Thailand。
文摘The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method.
基金sponsored by the National Natural Science Foundation of China(No.61901172,No.61831015,No.U1908210)the Shanghai Sailing Program(No.19YF1414100)+3 种基金the“Chenguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.19CG27)the Science and Technology Commission of Shanghai Municipality(No.19511120100,No.18DZ2270700,No.18DZ2270800)the foundation of Key Laboratory of Artificial Intelligence,Ministry of Education(No.AI2019002)and the Fundamental Research Funds for the Central Universities.
文摘As the science and technology develop,crime methods and scenes have become increasingly complex and diverse.Trace evidence analysis has become amore and more important criminal investigation technology and liquid is the main form of trace evidence.Food can provide not only energy,but clues to solve crimes.In this study,we build a hyperspectral imaging system to detect liquid residue traces,including apple juice,coffee,cola,milk and tea,on denims with light,middle and dark colors.The obtained hyperspectral images are first subjected to spectral calibration and hyperspectral data pretreatment.Subsequently,Partial Least Squares(PLS)is applied to select the informative wavelengths from the preprocessed spectra.For modeling phase,the combination optimal strategy,support vector machine(SVM)combined with random forest(RF),is developed to establish classification models.The experimental results demonstrate that the combination optimal model can achieve TPR,FPR,Precision,Recall,F1,and AUC of 83.5%,2.30%,79.7%,83.5%,81.6%,and 94.7%for classifying fabrics contaminated by various food residuals.With respect to the classification of liquid and fabric types,the combination optimalmodel also yields satisfactory classification performance.In future work,wewill expand the types of liquid,and make appropriate adjustment to algorithms for improving the robustness of classification models.This research may play a positive role in the construction of a harmonious society.
文摘Near infrared (NIR) hyperspectral imaging measurement of sugar content in peach was introauced. NIR spectral images (650~1 000 nm, resolution: 2 nm) of peach samples were captured with developed hyperspectral imaging setup. Partial least square (PLS) regression prediction model was developed to estimate the sugar content in peach; step-wise backward method was utilized to determine optimal wavelength subsets. Experimental results show that the calibration model with optimal wavelength subsets has a correlation coefficient of prediction of 0.97 and a standard error of prediction of 0.19, the prediction accuracy is higher than the calibration model applied over the whole wavelength, which proves that variable selection plays an important role in improving the prediction accuracy of PLS regression model.
基金supproted by the National Key Technology R&D Program of China(2012BAF07B05)
文摘In order to find an effective method of detecting thrips defect on green-peel citrus, a defect segmentation method was developed using a single threshold value based on combination of characteristic wavelengths principal component analysis (PCA) and B-spline lighting correction method in this study. At first, four characteristic wavelengths (523, 587, 700 and 768 nm) were obtained using PCA of Vis-NIR (visible and near-infrared) bands and analysis of weighting coefficients; secondarily, PCA was performed using characteristic wavelengths and the second principal component (PC2) was selected to classify images; then, B-spline lighting correction method was proposed to overcome the influence of lighting non-uniform on citrus when thrips defect was segmented; finally, thrips defect on citrus was extracted by global threshold segmentation and morphological image processing. The experimental results show that thrips defect in citrus can be detected with an accuracy of 96.5% by characteristic wavelengths PCA and B-spline lighting correction method. This study shows that thrips defect on green-peel citrus can be effectively identified using hyperspectral imaging technology.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61975056 and 61901173)the Shanghai Natural Science Foundation(Grant No.19ZR1416000)the Science and Technology Commission of Shanghai Municipality(Grant Nos.14DZ2260800 and 18511102500).
文摘Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution,which signicantly affects the absorption and reflection of light,the spectral feature is proved to be important for leukocytes classication and identication.This paper proposes an accurate identication method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging(HSI)technology which combines the spectral information.The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm.Then,the spectral features are extracted and combined with the spatial features.Based on this,the support vector machine(SVM)is applied for classication ofve types of leukocytes and abnormal leukocytes.Compared with different classication methods,the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes,improving the accuracy in the classication and identication of leukocytes.This paper only selects one subtype of ALL for test,and the proposed method can be applied for detection of other leukemia in the future.
基金This work was supported by Zhejiang Public Welfare Program of Applied Research(LGN19D010001)Zhejiang Agricultural Cooperative and Extensive Project of Key Technology(2020XTTGCY04-02+1 种基金2020XTTGCY01-05)the National Key R&D Program of China(2017YFE0122500).
文摘Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent years,hyperspectral imaging technology has shown great potential in detecting and differentiating plant diseases,pests and some other stresses at the leaf level.However,the lack of studies at canopy level hampers the detection of tea plant stresses at a larger scale.In this study,based on the canopy-level hyperspectral imaging data,the methods for identifying and differentiating the three commonly occurred tea stresses(i.e.,the tea leafhopper,anthrax and sun burn)were studied.To account for the complexity of the canopy scenario,a stepwise detecting strategy was proposed that includes the process of background removal,identification of damaged areas and discrimination of stresses.Firstly,combining the successive projection algorithm(SPA)spectral analysis and K-means cluster analysis,the background and overexposed non-plant regions were removed from the image.Then,a rigorous sensitivity analysis and optimization were performed on various forms of spectral features,which yielded optimal features for detecting damaged areas(i.e.,YSV,Area,GI,CARI and NBNDVI)and optimal features for stresses discrimination(i.e.,MCARI,CI,LCI,RARS,TCI and VOG).Based on this information,the models for identifying damaged areas and those models for discriminating different stresses were established using K-nearest neighbor(KNN),Random Forest(RF)and Fisher discriminant analysis.The identification model achieved an accuracy over 95%,and the discrimination model achieved an accuracy over 93%for all stresses.The results suggested the feasibility of stress detection and differentiation using canopy-level hyperspectral imaging techniques,and indicated the potential for its extension over large areas.
基金Supported by Major Agricultural Application Technology Innovation Project in Shandong Province
文摘In order to explore the spectral features and sensitive wave band of wheat leaf,we establish a quantitative relationship model between wheat chlorophyll content and spectral features to promote the application of hyperspectral technology in precise wheat fertilization and fast,non-destructive growth monitoring.Using the relational analysis,we analyze the relationship between chlorophyll content and spectral reflectance or the first derivative,and establish the chlorophyll content monitoring model.By selection and verification,the best estimation models for wheat chlorophyll content are as follows:SPAD = 36.75 + 188.168R387,SPAD =2094.242R'7153+ 112646.744 R'7152-1.561E7 R'715+42.991.The two models can well estimate the SPAD value of wheat leaf,and comparatively speaking,the SPAD estimation model based on wave band R387 has greater accuracy.
基金Supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(2013123)
文摘In this study, fresh pork tenderness, drip-loss, pH value and color parameters ( CIE, a * , b * and L * values) were simultaneously predicted using hyperspectral scattering imaging (HSI) technique. The hyperspectral scattering images of dO fresh pork samples were collected at the wavelength of 400 -I 100 nm, and the scattering profiles were fitted via Lorontzian distribution ( LD ) function to give three parameters a ( asymptotic value ), b (peak value ) and c ( full width at b/2). Stepwise discrimination was performed to determine the optimal wavelengths combinations. The LD parameters combinations (a, b and c) of optimal wavelengths were used to establish multi-linear regression (MLR) models to predict the pork attributes. The models were able to predict pork with high correlation coefficients of 0.92 for drip-loss, 0.94, 0.92 and 0.98 respectively for color parameters ( a * , b* and L * ), and for tenderness and pH value the models gave the correlation coefficients of 0.69 and 0.76, respectively. These results showed that the hyperspectral scattering technique was capable of predicting quality parameters of perk. The study provides an efficient means for rapid and nondestructive determination of pork quality simultaneously.
基金Supported by the Natural Science Foundation of Guangdong Province(2017A030310558)China Postdoctoral Science Foundation(2017M612672)Fundamental Research Funds for the Central Universities(2017MS067)
文摘This study was undertaken to investigate the feasibility of near-infrared(NIR) hyperspectral imaging(1 000–2 500 nm) for non-destructive and quantitative prediction of protein content in peanut kernels. Partial least squares regression(PLSR) calibration model was established between the spectral data extracted from the hyperspectral images and the reference measured protein content values, with the coefficient of determination of prediction(R_P^2) of 0.885 and root mean square error of prediction(RMSEP) of 0.465%.Regression coefficients(RC) from PLSR analysis were used to identify the most essential wavelengths that had the greatest influence on changes in the protein content. Eight optimal wavelengths were selected by RC and its corresponding simplified RC-PLSR prediction model was also obtained, showing better performance with a higher R_P^2 of 0.870 and a lower RMSEP of 0.494%. The results indicate that hyperspectral imaging with PLSR analysis can be used as a rapid and non-destructive method for predicting protein content in peanut.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3901403 and 2023YFC3007203).
文摘The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.
基金supported by JST PRESTO(Grant No.JPMJPR1878)JST FOREST(Grant No.21470594)+3 种基金JSPS Grant-in-Aid for Young Scientists(20K15227)Grant-in-Aid for Scientific Research(B)(Grant No.22538379)Grant-inAid for JSPS Fellows(Grant No.21J11484)JSPS Core-toCore Program,White Rock Foundation,Nakatani Foundation,and Ogasawara Foundation for the Promotion of Science and Engineering.
文摘Hyperspectral imaging(HSI)is a powerful tool widely used for various scientific and industrial applications due to its ability to provide rich spatiospectral information.However,in exchange for multiplex spectral information,its image acquisition rate is lower than that of conventional imaging,with up to a few colors.In particular,HSI in the infrared region and using nonlinear optical processes is impractically slow because the three-dimensional(3D)data cube must be scanned in a point-by-point manner.In this study,we demonstrate a framework to improve the spectral image acquisition rate of HSI by integrating time-domain HSI and compressed sensing.Specifically,we simulated broadband coherent Raman imaging at a record high frame rate of 25 frames per second(fps)with 100 pixels×100 pixels,which is 10×faster than that of previous work,based on an experimentally feasible sampling scheme utilizing 3D Lissajous scanning.
文摘In this research,a new method based on the hyperspectral imaging for searching the best decocting time of sun dried ginseng is reported.The spectral images at diferent decocting time of test sample have been taken by the st aring hyperspectral fAuorescence imaging systen and the solubility of active ingredients have been discussed by analyzing the changes on the spectral.curves.The spectr al range of the system is 400-720nm and the spectral resolution is 5nm.In the decocting process,the active ingredients of nonsoaked ginseng was dissolved in the tissue fluid at first,and reached equilibrium condition at last after the precipitation-dissolution reciprocating process of boiling.At last,the experiment al results show that the best decoction time of sun dried ginseng is about 60 min after boiling.
基金supported by the National Natural Science Foundation of China 62175153the Shanghai Science and Technology Commission 21S902700.
文摘Objective:We applied hyperspectral imaging(HSI)system to distinguish early caries from soundand pigmented areas.It will provide a theoretical basis and technical support,for research anddevelopment of an instrument that could be used for screening and detection of early dentalcaries.Methods:Eighteen extracted human teeth(molars and premolars),with varying degrees ofnatural pathology and no degree of decay involving dentin were obtained.HSI system with awavelength range from 400 to 1000nm was used to obtain images of all 18 teeth containingsound,carious and pigmented areas.We compared the spectra of the wavebands at both 500 nmand 780 nm from the different tooth states,and the reflectance diference bet ween sound versuscarious lesions and sound versus pigmented areas,respectively.Results:There was a slight diference in refectance bet ween carious areas and pigmented areas at500 nm.A substantial difference was additionally noted in refectance bet ween carious areas andpigmented areas at 780 nm.Conclusion:The results have shown that the interference of tooth surface pigment can be elim-inated in the near-infrared(NIR)waveband,and the caries can be effectively identifed from the pigmented areas.Thus,it could be used to detect carious areas of teeth in place of the traditionalvisual inspection method or white light endoscopy.Clinical significance:The NIR difused light signal enables the identification of early caries frompigment and other interference,providing a reasonable detection tool for early detection andearly treatment of teeth diseases.
文摘cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).
基金supported partially by the USDA-ARS Research Project#6054-44000-080-00D.
文摘Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.
基金the National Natural Science Foundation of China(No.31772062)Gannan Camellia Industry Development and Innovative Center Open Fund(Grant No.YK201610).
文摘The growth characteristics of Aspergillus parasitic us incubated on two culture media were ex-amined using shortwave infrared(SWIR,1000-2500 nm)hyperspectral imaging(HSI)in this work.HSI images of the A.parasiticus colonies growing on rose bengal medium(RBM)and maize agar medium(MAM)were recorded daily for 6 days.The growth phases of A.parasiticus were indicated through the pixel number and average spectra of colonies.On score plot of the first principal component(PC1)and PC2,four growth zones with varying mycelium densities were identified.Eight characteristic wavelengths(1095,1145,1195,1279,1442,1655,1834 and 1929 nm)were selected from PC1 loading,average spectra of each colony as well as each growth zone.F urthermore,support vector machine(S VM)classifier based on the eight wavelengths was built,and the classification accuracies for the four zones(from outer to inner zones)on the colonies on RBM were 99.77%,9935%,99.75%and 99.60%and 99.77%,9939%,99.31%and 98.22%for colonies on MAM.In addition,a new score plot of PC2 and PC3 was used to differ-entiate the colonies incubated on RBM and MAM for 6 days.Then characteristic wavelengths of 1067,1195,1279,1369,1459,1694,1834 and 1929 nm were selected from the loading of PC2 and PCg.Based on them,a new SVM model was developed to diferentiate colonies on RBM and MAM with accuracy of 100.00%and 9999%,respectively.In conclusion,SWIR hyperspectral image is a powerful tool for evaluation of growth characteristics of A.parasiticus incubated in diferent culture media.
基金subsidized by National Natural Science Foundation of China(Grant No.42071420)External Cooperation Program of the Chinese Academy of Sciences(183611KYSB20200080)+1 种基金National Key R&D Program of China(2019YFE0125300)Beijing Nova Program of Science and Technology(Z191100001119089).
文摘Hyperspectral imaging technique is known as a promising non-destructive way for detecting plants diseases and pests.In most previous studies,the utilization of the whole spectrum or a large number of bands as well as the complexity of model structure severely hampers the application of the technique in practice.If a detection system can be established with a few bands and a relatively simple logic,it would be of great significance for application.This study established a method for identifying and discriminating three commonly occurring diseases and pests of wheat,i.e.,powdery mildew,yellow rust and aphid with a few specific bands.Through a comprehensive spectral analysis,only three bands at 570,680 and 750 nm were selected.A novel vegetation index namely Ratio Triangular Vegetation Index(RTVI)was developed for detecting anomalous areas on leaves.Then,the Support Vector Machine(SVM)method was applied to construct the discrimination model based on the spectral ratio analysis.The validating results suggested that the proposed method with only three spectral bands achieved a promising accuracy with the Overall Accuracy(OA)of 83%.With three bands from the hyperspectral imaging data,the three wheat diseases and pests were successfully detected and discriminated.A stepwise strategy including background removal,damage lesions recognition and stresses discrimination was proposed.The present work can provide a basis for the design of low cost and smart instruments for disease and pest detection.
基金Supported by the National Key Research and Development Program of China(2016YFD0700204-02)China Agriculture Research System(CARS-36)Heilongjiang Post-doctoral Subsidy Project of China(LBH-Z17020)。
文摘To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Influence factors for hyperspectral data collection for milk samples were firstly researched,including height of sample,bottom color and sample filled up container or not.Pretreatment methods and variable selection algorithms were applied into original spectral data.Rapid detection models were built based on support vector machine method(SVM).Finally,standard normalized variable(SNV)-competitive adaptive reweighted sampling(CARS)and SVM model was chosen in this paper.The accuracies of calibration set and testing set were 0.97 and 0.97,respectively.Kappa coefficient of the model was 0.93.It could be seen that hyperspectral imaging technology could be used to detect for potassium sorbate in milk.Meanwhile,it also provided methodological supports for the rapid detection of other preservatives in milk.
基金supported by China National Key Research and Development Program(No.2016YFD0700304)Shandong Natural Science Foundation Youth Program(No.ZR2021QC216)Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Science(No.CXGC2023A34)。
文摘Peach aphid is a common pest and hard to detect.This study employs hyperspectral imaging technology to identify early damage in green cabbage caused by peach aphid.Through principal component transformation and multiple linear regression analysis,the correlation relation between spectral characteristics and infestation stage is analyzed.Then,four characteristic wavelength selection methods are compared and optimal characteristic wavelengths subset is determined to be input for modelling.One linear algorithm and two nonlinear modelling algorithms are compared.Finally,support vector machine(SVM)model based on the characteristic wavelengths selected by multi-cluster feature selection(MCFS)acquires the highest identification accuracy,which is 98.97%.These results indicate that hyperspectral imaging technology have the ability to identify early peach aphid infestation stages on green cabbages.
文摘Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.