Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in ...Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.展开更多
Gamma-ray polarimetry is a new and prospective tool for studying extremely high-energy celestial objects and is of great significance for the field of astrophysics.With the rapid development of microsatellite technolo...Gamma-ray polarimetry is a new and prospective tool for studying extremely high-energy celestial objects and is of great significance for the field of astrophysics.With the rapid development of microsatellite technology,the advantages of space exploration have become increasingly apparent.Therefore,we simulated a soft-gamma-ray polarimeter for a microsatellite based on the Compton scattering principle.We performed detailed Monte Carlo simulations using monoenergetic gamma-ray linear-polarization sources and Crab-like sources in the energy range of 0.1-10 MeV considering the orbital background.The polarimeter exhibited excellent polarization detection performance.The modulation factor was 0.80±0.01,and the polarization angles were accurate within an error of 0.2°at 200 keV for on-axis incidence.For the Crab-like sources for on-axis incidence,the polarization degrees were consistent with the set values within the error tolerance,the modulation factor was 0.76±0.01,and the minimum detectable polarization reached 2.4%at 3σfor an observation time of10^(6) s.Additionally,the polarimeter exhibited recoil electron tracking,imaging,and powerful background suppression in a large field of view(FoV;∼2πsr).The proposed polarimeter meets the requirements of a space soft-gamma-ray polarization detector and has promising research prospects.展开更多
Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilit...Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials.In this study,a simple Monte Carlo code,EJUSTCO,is developed to cd simulate gamma radiation transport in shielding materials for academic purposes.The code considers the photoelectric effect,Compton(incoherent)scattering,pair production,and photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem.Variance reduction techniques,such as the Russian roulette,survival weighting,and exponential transformation,are incorporated into the code to improve computational efficiency.Predicting the exponential transformation parameter typically requires trial and error as well as expertise.Herein,a deep learning neural network is proposed as a viable method for predicting this parameter for the first time.The model achieves an MSE of 0.00076752 and an R-value of 0.99998.The exposure buildup factors and radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead,water,iron,concrete,and aluminum in single-,double-,and triple-layer material systems are validated by comparing the results with those of MCNP,ESG,ANS-6.4.3,MCBLD,MONTEREY MARK(M),PENELOPE,and experiments.Average errors of 5.6%,2.75%,and 10%are achieved for the exposure buildup factor in single-,double-,and triple-layer materials,respectively.A significant parameter that is not considered in similar studies is the gamma ray albedo.In the EJUSTCO code,the total number and energy albedos have been computed.The results are compared with those of MCNP,FOTELP,and PENELOPE.In general,the EJUSTCO-developed code can be employed to assess the performance of radiation shielding materials because the validation results are consistent with theoretical,experimental,and literary results.展开更多
We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of...We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.展开更多
Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007,...Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.展开更多
Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response ...Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response functions for DAMPE(DmpIRFs) including the effective area, point-spread function and energy dispersion, which are crucial for gamma-ray data analysis based on statistics from simulation data. A dedicated software named DmpST is developed to facilitate the scientific analyses of DAMPE gamma-ray data. Considering the limited number of photons and angular resolution of DAMPE, the maximum likelihood method is adopted in DmpST to better disentangle different source components. The basic mathematics and framework regarding this software are also introduced in this paper.展开更多
The aim of this study was to determine the attenuation of gamma and X-rays with different energies caused by passage through different materials.To this end,different materials with a range of atomic numbers were chos...The aim of this study was to determine the attenuation of gamma and X-rays with different energies caused by passage through different materials.To this end,different materials with a range of atomic numbers were chosen to measure gamma and X-ray attenuation coefficients and to explore the mechanisms of interaction of gamma and X-rays with matter of various kinds.It is shown that the attenuation coefficients first decrease and then increase with increase in the radiation(photon)energy.The attenuation of gamma and X-rays passing through materials with high atomic number is greater than that in materials with low atomic number.The attenuation minimum is related to the atomic number of the irradiated materials.The larger the atomic number is,the lower the energy corresponding to attenuation minimum is.Photoelectric and Compton effects are the main processes when gamma rays pass through individual materials with high and low atomic numbers,respectively.Therefore,for radiotherapy and radiation protection,different methods should be considered and selected for the use of gamma and X-rays of different energies for use in different materials.展开更多
Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This wi...Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This will leave some imprints in the afterglows. We study the effect of equal arrival time surfaces numerically for various circumstances, i.e., isotropic fireballs, collimated jets, density jumps and energy injection events. For each case, a direct comparison is made between including and not including the effect. For isotropic fireballs and jets viewed on axis, the effect slightly hardens the spectra and postpones the peak time of the afterglows, but does not change the shapes of the spectra and light curves significantly. In the cases of a density jump or an energy injection, the effect smears out the variations in the afterglows markedly.展开更多
The development of Bi2WO6-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light.In this work,the effect of high energy radiation(...The development of Bi2WO6-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light.In this work,the effect of high energy radiation(γ-ray)on the structure and the photocatalytic activity of Bi2WO6 nanocrystals was first studied.No morphological change of Bi2WO6 nanocrystals was observed by SEM underγ-ray radiation.However,the XRD spectra of the irradiated Bi2WO6 nanocrystals showed the characteristic 2θof(113)plane shifts slightly from 28.37o to 28.45o with the increase of the absorbed dose,confirming the change in the crystal structure of Bi2WO6.The XPS results proved the crystal structure change was originated from the generation of oxygen vacancy defects under high-dose radiation.The photocatalytic activity of Bi2WO6 on the decomposition of methylene blue(MB)in water under visible light increases gradually with the increase of absorbed dose.Moreover,the improved photocatalytic performance of the irradiated Bi2WO6 nanocrystals remained after three cycles of photocatalysis,indicating a good stability of the created oxygen vacancy defects.This work gives a new simple way to improve photocatalytic performance of Bi2WO6 through creating oxygen vacancy defects in the crystal structure by-ray radiation.展开更多
A systematic study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift is presented. Our sample includes 25 GRBs of which 13 are B-GRBs and 12 are D...A systematic study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift is presented. Our sample includes 25 GRBs of which 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (Fx), the gamma-ray fluxes (Sγ), and the ratio (Rγ,x) are similar for the two kinds of GRBs, that any observed differences should be simply statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are of the same population with comparable total energies of explosion. The suppression of optical emission in the D-GRBs should result from circumburst but not from their central engine.展开更多
The mass attenuation coefficients (l/q) of a natural material, i.e., olive peat, were measured at photon energies of 0.059, 0.356, 0.662, 1.17, and 1.332 MeV and compared with those of concrete and Pb. The experimenta...The mass attenuation coefficients (l/q) of a natural material, i.e., olive peat, were measured at photon energies of 0.059, 0.356, 0.662, 1.17, and 1.332 MeV and compared with those of concrete and Pb. The experimental samples were irradiated with 214Am, 133Ba, 137Cs, and 60Co point sources using a transmission arrangement. The olive peat samples were obtained from different areas in Jordan, namely Mafraq (sample M), Kerak (sample K), Ajloun (sample A), and Irbid (sample I), and photon energies were measured using a NaI(Tl) scintillation detector with an energy resolution of 7.6% at 662 keV. The differences in the l/q of olive peat samples and the calculated l/q of concrete were consistently within 0.7% at photon energies of 0.356–1.332 MeV. This finding indicates that olive peat can be used in radiation applications in the field of medical physics. Finally, the half-value layer (HVL) of the experimental samples was measured, and results were compared with those of concrete and Pb. Pb and concrete exhibited minimal HVL values due to their high density, and the HVL of olive peat revealed lower shielding effectiveness than that of concrete.展开更多
In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma ...In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma rays. The mass attenuation coefficients were also calculated using MCNP-4 B code and compared with Win XCOM results; consequently, a good consistency between the results of Win XCOM and MCNP-4 B was observed. Furthermore, the G-P fitting method was used to evaluate the values of exposure buildup factor(EBF) in the energy range of 0.015–15 Me V up to 40 mean free paths. Among the selected ores, boron-bearing iron concentrate ore(M3)was determined to be the best gamma ray shielding ore owing to its higher values of mass attenuation coefficient and equivalent atomic number and lower value of EBF.Moreover, American Evaluated Nuclear Data File(ENDF/B-VII) was used to analyze the shielding effectivenessagainst thermal neutrons. It was determined that Szaibelyite(M2) is the best thermal neutron shielding material.This study would be useful for demonstrating the potential of boron-containing ores for applications in the field of nuclear engineering and technology.展开更多
We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highe...We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highest pulses from burst profiles observed by BATSE on board CGRO from 1991 April 21 to 1999 January 26. The statistical light curves of the highest pulses in four energy channels have been derived by an aligning method, which illustrate the temporal evolution of the pulse emission. Our result that narrower pulses go with higher energies is consistent with previous findings. By normalizing both the pulse durations and counts to unity, 'characteristic' profiles of the highest pulses in the four channels are also derived. The four characteristic profiles are turned out to be almost the same, thus strongly support the previous conclusion that the temporal profiles in different energy channels are self-similar and the previous conjecture on GRB pulses, implying that the emission process is similar at different energies. The cosmological time dilation effect is examined by investigating the relationship between the pulse flux and pulse duration. An anti-correlation between the two was found, which agrees with the expectation of the cosmological time dilation effect. Also, the evolution of the pulse duration with the observational epoch is studied. The result shows that the pulse duration tends to be shorter in later epochs. This trend cannot be explained by the present theoretical models, and may represent a great challenge to current theories.展开更多
A digitally controlled three-dimensional gamma-scanning apparatuswas developed and used to trou- bleshoot distillation column is thepresent investigation. In a 140 mm (ID) model column, variousmalfunctional phenomena,...A digitally controlled three-dimensional gamma-scanning apparatuswas developed and used to trou- bleshoot distillation column is thepresent investigation. In a 140 mm (ID) model column, variousmalfunctional phenomena, both rate and process related conditions andstructural problems, which may be frequently encountered in theoperation of tray and packing columns, were experimentally simulatedand tested with the developed scan- ning system. The experimentalresults showed that the scanning spectra can fairly reflect thesimulated phenomena.展开更多
In the present study,we investigate several textile coating pastes used in the market based on their radiation protection capability for gamma rays.The gamma ray mass absorption coefficients of some coating pastes dop...In the present study,we investigate several textile coating pastes used in the market based on their radiation protection capability for gamma rays.The gamma ray mass absorption coefficients of some coating pastes doped with antimony,boron and silver elements have been investigated.It has been determined that the gamma ray mass attenuation coefficient decreases rapidly as the energy of the gamma rays increases.It was determined that the doping of the main printing paste with silver and antimony considerably increased the gamma ray absorption capability of main paste.However,the doping of the paste with boron reduces the mass absorption of gamma rays.In particular,the gamma ray mass absorption power of the main paste doped with silver and antimony was determined to be useful in the gamma energy range from 80 to 140keV.This indicates that the newly doped textile material may be considered for radiation protection in the case of low-energy gamma rays.展开更多
The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate t...The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate the two puzzles based on the global spectral behaviors of different GRB populations, the long GRBs, the short GRBs, and the X-ray flashes (XRFs), in the HR?E<SUB>p</SUB> plane (HR the spectral hardness ratio) with BATSE and HETE-2 observations. It is found that the long GRBs and the XRFs observed by HETE-2 seem to follow the same sequence in the HR?E<SUB>p</SUB> plane, with the XRFs at the low end of this sequence. We fit the sequence by a universal Band function, and find that this sequence is mainly defined by the low energy index α, and is insensitive to the high energy index, β. With fixed β = ?5, a best fit is given by α = ?1.00 with χ<SUP>2</SUP><SUB>min</SUB>/dof = 2.2. The long and short GRBs observed by BATSE follow significantly different sequences in the HR?E<SUB>p</SUB> plane, with most of the short GRBs having a larger hardness ratio than the long GRBs at a given E<SUB>p</SUB>. For the long GRBs a best-fit yields α = ?0.30 and β = ?2.05. For the short GRBs, a best fit gives α = ?0.60 with χ<SUP>2</SUP><SUB>min</SUB> = 1.1 (with β fixed at -2.0 because it is numerically unstable). The α value for the short GRBs is significantly greater than that for the long GRBs. These results indicate that the global spectral behaviors of the long GRB sample and the XRF sample are similar, while that of the short GRBs is different. The short GRBs seem to be a unique subclass of GRBs, and they are not the higher energy extension of the long GRBs.展开更多
Panicles of an indica rice line TM7-5 were subjected to radiation with 137^Cs gamma rays at 0 (control), 5, 10, 15 and 20 Gy respectively, and then its anthers were cultured. There were slight differences among the ...Panicles of an indica rice line TM7-5 were subjected to radiation with 137^Cs gamma rays at 0 (control), 5, 10, 15 and 20 Gy respectively, and then its anthers were cultured. There were slight differences among the treatments in peak emerging time of callus initiation, from 38 to 44 days after inoculation (DAI) as well as the frequency of callus initiation (2.3-3.5%). About two thirds calli were induced before 44 DAI, and calli derived beyond 60 DAI lost the regeneration ability. Green plant regeneration frequency was significantly stimulated from two- to three-fold by irradiation of the 1370S gamma rays compared with the control, and the maximum was 22,81% (15 Gy). The culture ability based on callus initiation and green plantlet regeneration was 0.19% for the control while it was over 0.45% for all the irradiated treatments, and the maximum was 0,59% for 15 Gy treatment. The advantages of panicle irradiation before anther culture and the potential application in rice anther culture, especially for recalcitrant indica rice, were discussed.展开更多
The curvature of the γ-ray spectrum in blazars may reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting...The curvature of the γ-ray spectrum in blazars may reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting region. The γ-ray spectra of Fermi blazars are normally fitted either by a single power-law(PL) or a log-normal(call Logarithmic Parabola, LP) form. The possible reason for this difference is not clear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3 LAC Clean Sample. We find that the γ-ray flux(100 Me V–100 Ge V) and variability index follow bimodal distributions for PL and LP blazars, where the γ-ray flux and variability index show a positive correlation. However, the distributions of γ-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of γ-ray fluxes for LP and PL blazars may not be intrinsic and all blazars may have an intrinsically curved γ-ray spectrum, and the PL spectrum is just caused by the fitting effect due to less photons.展开更多
This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved ...This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved that these approaches have yielded good results on classifying the sedimentary facies, defining the redox transitional zones and reflecting deep mineralization information. They may probably become new methods on searching for sandstone-type uranium deposits.展开更多
It is generally accepted that the history of the expansion of the universe can be exactly described by the concordance model, which makes specific predictions about the shape of the Hubble diagram. The redshift-magnit...It is generally accepted that the history of the expansion of the universe can be exactly described by the concordance model, which makes specific predictions about the shape of the Hubble diagram. The redshift-magnitude Hubble diagram in the redshift range z = 0.0104 - 1 seems to confirm this expectation, and it is believed that this conformity is also valid in the high redshift range. However, this belief is not undisputed. Recent work in the high redshift range of up to z = 8.1 has shown that the shape of the Hubble diagram deviates considerably from the predictions made by the Lambda cold dark matter model. These analyses, however, were based on mixed SN1a and gamma ray burst data, and some astronomers argue that this may have biased the results. In this paper, 109 cosmology-independent, calibrated gamma ray burst z/μdata points are used to calculate the Hubble diagram in the range z = 0.034 to z = 8.1. The outcome of this analysis confirms prior results: contrary to expectations, the shape of the Hubble diagram turns out to be exponential, and this is difficult to explain within the framework of the standard model. The cosmological implications of this unexpected result are discussed.展开更多
文摘Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.
基金This work was supported by the National Natural Science Foundation of China(Nos.U2031206,12273086,12133007)the CAS Key Technology Talent Program。
文摘Gamma-ray polarimetry is a new and prospective tool for studying extremely high-energy celestial objects and is of great significance for the field of astrophysics.With the rapid development of microsatellite technology,the advantages of space exploration have become increasingly apparent.Therefore,we simulated a soft-gamma-ray polarimeter for a microsatellite based on the Compton scattering principle.We performed detailed Monte Carlo simulations using monoenergetic gamma-ray linear-polarization sources and Crab-like sources in the energy range of 0.1-10 MeV considering the orbital background.The polarimeter exhibited excellent polarization detection performance.The modulation factor was 0.80±0.01,and the polarization angles were accurate within an error of 0.2°at 200 keV for on-axis incidence.For the Crab-like sources for on-axis incidence,the polarization degrees were consistent with the set values within the error tolerance,the modulation factor was 0.76±0.01,and the minimum detectable polarization reached 2.4%at 3σfor an observation time of10^(6) s.Additionally,the polarimeter exhibited recoil electron tracking,imaging,and powerful background suppression in a large field of view(FoV;∼2πsr).The proposed polarimeter meets the requirements of a space soft-gamma-ray polarization detector and has promising research prospects.
基金Our profound gratitude and appreciation go to the Egyptian and Japanese governments for supporting and financing this research work at the Egypt-Japan University of Science and TechnologyFurther appreciation goes to the Science and Technology Development Fund for the additional financial support(project ID:STDF-33397).
文摘Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials.In this study,a simple Monte Carlo code,EJUSTCO,is developed to cd simulate gamma radiation transport in shielding materials for academic purposes.The code considers the photoelectric effect,Compton(incoherent)scattering,pair production,and photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem.Variance reduction techniques,such as the Russian roulette,survival weighting,and exponential transformation,are incorporated into the code to improve computational efficiency.Predicting the exponential transformation parameter typically requires trial and error as well as expertise.Herein,a deep learning neural network is proposed as a viable method for predicting this parameter for the first time.The model achieves an MSE of 0.00076752 and an R-value of 0.99998.The exposure buildup factors and radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead,water,iron,concrete,and aluminum in single-,double-,and triple-layer material systems are validated by comparing the results with those of MCNP,ESG,ANS-6.4.3,MCBLD,MONTEREY MARK(M),PENELOPE,and experiments.Average errors of 5.6%,2.75%,and 10%are achieved for the exposure buildup factor in single-,double-,and triple-layer materials,respectively.A significant parameter that is not considered in similar studies is the gamma ray albedo.In the EJUSTCO code,the total number and energy albedos have been computed.The results are compared with those of MCNP,FOTELP,and PENELOPE.In general,the EJUSTCO-developed code can be employed to assess the performance of radiation shielding materials because the validation results are consistent with theoretical,experimental,and literary results.
文摘We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.
基金supported by the National High Technology Research and Development Program of China(Nos2008AA12A212 and 2010AA122202)the National Natural Science Foundation of China(Nos41040031 and 40904024)
文摘Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.
基金supported in part by the National Key Program for Research and Development (2016YFA0400200)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB23040000)+3 种基金the 13th Five-year Informatization Plan of Chinese Academy of Sciences (XXH13506)the National Natural Science Foundation of China (Nos. U1631111, U1738123, U1738136 and U1738210)Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Young Elite Scientists Sponsorship Program
文摘Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response functions for DAMPE(DmpIRFs) including the effective area, point-spread function and energy dispersion, which are crucial for gamma-ray data analysis based on statistics from simulation data. A dedicated software named DmpST is developed to facilitate the scientific analyses of DAMPE gamma-ray data. Considering the limited number of photons and angular resolution of DAMPE, the maximum likelihood method is adopted in DmpST to better disentangle different source components. The basic mathematics and framework regarding this software are also introduced in this paper.
基金supported by the National Natural Science Foundation of China(Nos.11475013,11975040 and U1832130)
文摘The aim of this study was to determine the attenuation of gamma and X-rays with different energies caused by passage through different materials.To this end,different materials with a range of atomic numbers were chosen to measure gamma and X-ray attenuation coefficients and to explore the mechanisms of interaction of gamma and X-rays with matter of various kinds.It is shown that the attenuation coefficients first decrease and then increase with increase in the radiation(photon)energy.The attenuation of gamma and X-rays passing through materials with high atomic number is greater than that in materials with low atomic number.The attenuation minimum is related to the atomic number of the irradiated materials.The larger the atomic number is,the lower the energy corresponding to attenuation minimum is.Photoelectric and Compton effects are the main processes when gamma rays pass through individual materials with high and low atomic numbers,respectively.Therefore,for radiotherapy and radiation protection,different methods should be considered and selected for the use of gamma and X-rays of different energies for use in different materials.
基金the National Natural Science Foundation of China.
文摘Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This will leave some imprints in the afterglows. We study the effect of equal arrival time surfaces numerically for various circumstances, i.e., isotropic fireballs, collimated jets, density jumps and energy injection events. For each case, a direct comparison is made between including and not including the effect. For isotropic fireballs and jets viewed on axis, the effect slightly hardens the spectra and postpones the peak time of the afterglows, but does not change the shapes of the spectra and light curves significantly. In the cases of a density jump or an energy injection, the effect smears out the variations in the afterglows markedly.
基金supported by the National Natural Science Foundation of China (No.51473152, No.51573174, and No.51773189)Science Challenge Project (No.TZ2018004)the Fundamental Research Funds for the Central Universities (WK3450000001 and WK3450000004)
文摘The development of Bi2WO6-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light.In this work,the effect of high energy radiation(γ-ray)on the structure and the photocatalytic activity of Bi2WO6 nanocrystals was first studied.No morphological change of Bi2WO6 nanocrystals was observed by SEM underγ-ray radiation.However,the XRD spectra of the irradiated Bi2WO6 nanocrystals showed the characteristic 2θof(113)plane shifts slightly from 28.37o to 28.45o with the increase of the absorbed dose,confirming the change in the crystal structure of Bi2WO6.The XPS results proved the crystal structure change was originated from the generation of oxygen vacancy defects under high-dose radiation.The photocatalytic activity of Bi2WO6 on the decomposition of methylene blue(MB)in water under visible light increases gradually with the increase of absorbed dose.Moreover,the improved photocatalytic performance of the irradiated Bi2WO6 nanocrystals remained after three cycles of photocatalysis,indicating a good stability of the created oxygen vacancy defects.This work gives a new simple way to improve photocatalytic performance of Bi2WO6 through creating oxygen vacancy defects in the crystal structure by-ray radiation.
基金Supported by the National Natural Science Foundation of China.
文摘A systematic study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift is presented. Our sample includes 25 GRBs of which 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (Fx), the gamma-ray fluxes (Sγ), and the ratio (Rγ,x) are similar for the two kinds of GRBs, that any observed differences should be simply statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are of the same population with comparable total energies of explosion. The suppression of optical emission in the D-GRBs should result from circumburst but not from their central engine.
文摘The mass attenuation coefficients (l/q) of a natural material, i.e., olive peat, were measured at photon energies of 0.059, 0.356, 0.662, 1.17, and 1.332 MeV and compared with those of concrete and Pb. The experimental samples were irradiated with 214Am, 133Ba, 137Cs, and 60Co point sources using a transmission arrangement. The olive peat samples were obtained from different areas in Jordan, namely Mafraq (sample M), Kerak (sample K), Ajloun (sample A), and Irbid (sample I), and photon energies were measured using a NaI(Tl) scintillation detector with an energy resolution of 7.6% at 662 keV. The differences in the l/q of olive peat samples and the calculated l/q of concrete were consistently within 0.7% at photon energies of 0.356–1.332 MeV. This finding indicates that olive peat can be used in radiation applications in the field of medical physics. Finally, the half-value layer (HVL) of the experimental samples was measured, and results were compared with those of concrete and Pb. Pb and concrete exhibited minimal HVL values due to their high density, and the HVL of olive peat revealed lower shielding effectiveness than that of concrete.
基金supported by the National Natural Science Foundation of China(Nos.51472048,50774022)the Key Laboratory Project of Liaoning Province Education Office(No.LZ 2014-022)
文摘In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma rays. The mass attenuation coefficients were also calculated using MCNP-4 B code and compared with Win XCOM results; consequently, a good consistency between the results of Win XCOM and MCNP-4 B was observed. Furthermore, the G-P fitting method was used to evaluate the values of exposure buildup factor(EBF) in the energy range of 0.015–15 Me V up to 40 mean free paths. Among the selected ores, boron-bearing iron concentrate ore(M3)was determined to be the best gamma ray shielding ore owing to its higher values of mass attenuation coefficient and equivalent atomic number and lower value of EBF.Moreover, American Evaluated Nuclear Data File(ENDF/B-VII) was used to analyze the shielding effectivenessagainst thermal neutrons. It was determined that Szaibelyite(M2) is the best thermal neutron shielding material.This study would be useful for demonstrating the potential of boron-containing ores for applications in the field of nuclear engineering and technology.
基金Supported by the National Natural Science Foundation of China.
文摘We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highest pulses from burst profiles observed by BATSE on board CGRO from 1991 April 21 to 1999 January 26. The statistical light curves of the highest pulses in four energy channels have been derived by an aligning method, which illustrate the temporal evolution of the pulse emission. Our result that narrower pulses go with higher energies is consistent with previous findings. By normalizing both the pulse durations and counts to unity, 'characteristic' profiles of the highest pulses in the four channels are also derived. The four characteristic profiles are turned out to be almost the same, thus strongly support the previous conclusion that the temporal profiles in different energy channels are self-similar and the previous conjecture on GRB pulses, implying that the emission process is similar at different energies. The cosmological time dilation effect is examined by investigating the relationship between the pulse flux and pulse duration. An anti-correlation between the two was found, which agrees with the expectation of the cosmological time dilation effect. Also, the evolution of the pulse duration with the observational epoch is studied. The result shows that the pulse duration tends to be shorter in later epochs. This trend cannot be explained by the present theoretical models, and may represent a great challenge to current theories.
基金the Department of Research and Development, SINOPEC.
文摘A digitally controlled three-dimensional gamma-scanning apparatuswas developed and used to trou- bleshoot distillation column is thepresent investigation. In a 140 mm (ID) model column, variousmalfunctional phenomena, both rate and process related conditions andstructural problems, which may be frequently encountered in theoperation of tray and packing columns, were experimentally simulatedand tested with the developed scan- ning system. The experimentalresults showed that the scanning spectra can fairly reflect thesimulated phenomena.
基金supported by the Sinop University Scientific Research Projects Coordinator(No.GMYO-1901-16-14)。
文摘In the present study,we investigate several textile coating pastes used in the market based on their radiation protection capability for gamma rays.The gamma ray mass absorption coefficients of some coating pastes doped with antimony,boron and silver elements have been investigated.It has been determined that the gamma ray mass attenuation coefficient decreases rapidly as the energy of the gamma rays increases.It was determined that the doping of the main printing paste with silver and antimony considerably increased the gamma ray absorption capability of main paste.However,the doping of the paste with boron reduces the mass absorption of gamma rays.In particular,the gamma ray mass absorption power of the main paste doped with silver and antimony was determined to be useful in the gamma energy range from 80 to 140keV.This indicates that the newly doped textile material may be considered for radiation protection in the case of low-energy gamma rays.
基金the National Natural Science Foundation of China.
文摘The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate the two puzzles based on the global spectral behaviors of different GRB populations, the long GRBs, the short GRBs, and the X-ray flashes (XRFs), in the HR?E<SUB>p</SUB> plane (HR the spectral hardness ratio) with BATSE and HETE-2 observations. It is found that the long GRBs and the XRFs observed by HETE-2 seem to follow the same sequence in the HR?E<SUB>p</SUB> plane, with the XRFs at the low end of this sequence. We fit the sequence by a universal Band function, and find that this sequence is mainly defined by the low energy index α, and is insensitive to the high energy index, β. With fixed β = ?5, a best fit is given by α = ?1.00 with χ<SUP>2</SUP><SUB>min</SUB>/dof = 2.2. The long and short GRBs observed by BATSE follow significantly different sequences in the HR?E<SUB>p</SUB> plane, with most of the short GRBs having a larger hardness ratio than the long GRBs at a given E<SUB>p</SUB>. For the long GRBs a best-fit yields α = ?0.30 and β = ?2.05. For the short GRBs, a best fit gives α = ?0.60 with χ<SUP>2</SUP><SUB>min</SUB> = 1.1 (with β fixed at -2.0 because it is numerically unstable). The α value for the short GRBs is significantly greater than that for the long GRBs. These results indicate that the global spectral behaviors of the long GRB sample and the XRF sample are similar, while that of the short GRBs is different. The short GRBs seem to be a unique subclass of GRBs, and they are not the higher energy extension of the long GRBs.
文摘Panicles of an indica rice line TM7-5 were subjected to radiation with 137^Cs gamma rays at 0 (control), 5, 10, 15 and 20 Gy respectively, and then its anthers were cultured. There were slight differences among the treatments in peak emerging time of callus initiation, from 38 to 44 days after inoculation (DAI) as well as the frequency of callus initiation (2.3-3.5%). About two thirds calli were induced before 44 DAI, and calli derived beyond 60 DAI lost the regeneration ability. Green plant regeneration frequency was significantly stimulated from two- to three-fold by irradiation of the 1370S gamma rays compared with the control, and the maximum was 22,81% (15 Gy). The culture ability based on callus initiation and green plantlet regeneration was 0.19% for the control while it was over 0.45% for all the irradiated treatments, and the maximum was 0,59% for 15 Gy treatment. The advantages of panicle irradiation before anther culture and the potential application in rice anther culture, especially for recalcitrant indica rice, were discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11763005,11622324,11573009,11763002,U1431111 and U1431126)supported by the Research Foundation for Advanced Talents of Liupanshui Normal University(LPSSYKYJJ201506)+3 种基金the Open Fund of Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processingthe Physical Electronic Key Discipline of Guizhou Province(ZDXK201535)the Natural Science Foundation of the Department of Education of Guizhou Province(QJHKYZ[2015]455)the Research Foundation of Liupanshui Normal University(LPSSYDXS1514 and LPSSY201401)
文摘The curvature of the γ-ray spectrum in blazars may reflect the intrinsic distribution of emitting electrons, which will further give some information on the possible acceleration and cooling processes in the emitting region. The γ-ray spectra of Fermi blazars are normally fitted either by a single power-law(PL) or a log-normal(call Logarithmic Parabola, LP) form. The possible reason for this difference is not clear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3 LAC Clean Sample. We find that the γ-ray flux(100 Me V–100 Ge V) and variability index follow bimodal distributions for PL and LP blazars, where the γ-ray flux and variability index show a positive correlation. However, the distributions of γ-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of γ-ray fluxes for LP and PL blazars may not be intrinsic and all blazars may have an intrinsically curved γ-ray spectrum, and the PL spectrum is just caused by the fitting effect due to less photons.
文摘This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved that these approaches have yielded good results on classifying the sedimentary facies, defining the redox transitional zones and reflecting deep mineralization information. They may probably become new methods on searching for sandstone-type uranium deposits.
文摘It is generally accepted that the history of the expansion of the universe can be exactly described by the concordance model, which makes specific predictions about the shape of the Hubble diagram. The redshift-magnitude Hubble diagram in the redshift range z = 0.0104 - 1 seems to confirm this expectation, and it is believed that this conformity is also valid in the high redshift range. However, this belief is not undisputed. Recent work in the high redshift range of up to z = 8.1 has shown that the shape of the Hubble diagram deviates considerably from the predictions made by the Lambda cold dark matter model. These analyses, however, were based on mixed SN1a and gamma ray burst data, and some astronomers argue that this may have biased the results. In this paper, 109 cosmology-independent, calibrated gamma ray burst z/μdata points are used to calculate the Hubble diagram in the range z = 0.034 to z = 8.1. The outcome of this analysis confirms prior results: contrary to expectations, the shape of the Hubble diagram turns out to be exponential, and this is difficult to explain within the framework of the standard model. The cosmological implications of this unexpected result are discussed.