DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model...AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.展开更多
BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to...BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to explore the relationship between HIF-1αexpression and hepatocarcinogenesis at the early stage of HCC. METHODS:A hepatoma model was made with 2-fluorenyl- acetamide(2-FAA)in male Sprague-Dawley rats.Morphological changes of rat hepatocytes were assessed pathologically (HE staining).The dynamic expression of hepatic and circulating HIF-1αwas quantitatively analyzed by ELISA. The gene fragments of hepatic HIF-1αmRNA were amplified by RT-PCR and confirmed by sequencing.The cellular distribution of hepatic HIF-1αexpression was confirmed by immunohistochemistry. RESULTS:Histological examination confirmed granulelike degeneration to atypical hyperplasia and HCC development in rat hepatocytes and progressive increases in the levels of hepatic and circulating HIF-1αand its gene expression during the course.The levels of HIF-1α expression in the liver and blood of rats with hepatoma were significantly higher than those in normal ratsand those with degeneration.Immunohistochemical analysis confirmed the positive expression and hepatocyte distribution of HIF-1αin the development of rat hepatoma. A positive relationship was found between HIF-1α expression in the liver and blood(P<0.01). CONCLUSIONS:The above observations support the hypothesis that the overexpression of HIF-1αand its gene are closely associated with the malignant transformation of hepatocytes and play an important role at the stage of hepatocarcinogenesis.展开更多
AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lin...AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.展开更多
AIM To investigate the relationship between hypoxia-inducible factor-1α(HIF-1α), prolyl 4-hydroxylase beta(P4 HB) expression, and clinicopathologic parameters, as well as the prognostic value of these genes for pati...AIM To investigate the relationship between hypoxia-inducible factor-1α(HIF-1α), prolyl 4-hydroxylase beta(P4 HB) expression, and clinicopathologic parameters, as well as the prognostic value of these genes for patients with gastric cancer(Gc).METHODS Hypoxia is a critical factor that shapes the Gc microenvironment. In previous reports, we have demonstrated that P4 HB is a potential target of HIF-1α. In the present study, gene expression profiling interactive analysis(GEPIA) was used to analyze the relationship between P4 HB and hypoxia-associated genes. To this end, 428 Gc tissue samples were used to analyze the expression of HIF-1α and P4 HB via immunohistochemical staining. Patient samples were classified as having weak-expression or over-expression both in terms of HIF-1α and P4 HB. Correlations between biomarkers and clinicopathological factors were analyzed to predict survival. RESULTS P4 HB demonstrated a positive correlation with hypoxiaassociated genes(P < 0.05). HIF-1α and P4 HB overexpression have a significant correlation with TNM staging(χ2 = 23.32, P = 0.00; χ2 = 65.64, P = 0.00) and peritoneum cavity metastasis(χ2 = 12.67, P = 0.00; χ2 = 39.29, P = 0.00). In univariate analysis, patients with a high HIF-1α expression trend had a shorter disease-free survival(DFS: 44.80 mo vs 22.06 mo) and overall survival(OS: 49.58 mo vs 39.92 mo). P4 HB overexpression reflected similar results: patients with over-expression of P4 HB had a shorter survival time than those with weak-expression(DFS: 48.03 mo vs 29.64 mo, OS: 52.48 mo vs 36.87 mo). Furthermore, HIF-1α is also a clinicopathological predictor of dismal prognosis according to multivariate analysis(DFS, 95%c I: 0.52-0.88, P < 0.00; OS, 95%c I: 0.50-0.85, P < 0.00). However, P4 HB was meaningful in DFS(95%c I: 0.58-1.00, P < 0.05) but not in OS(95%c I: 0.72-1.23, P > 0.05).CONCLUSION Overexpression of HIF-1α and P4 HB is associated with poor prognosis in patients with Gc. Thus, these genes may be potential prognostic biomarker candidates in GC.展开更多
Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with ne...Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide(NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha(HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione(GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.展开更多
AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the p...AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.展开更多
AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were ...AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were detected in human CRC tissues by immunohistochemistry and quantitative realtime polymerase chain reaction(q RT-PCR). SW480 and HT-29 cells were exposed to normoxia or hypoxia. Protein and m RNA levels of HIF-1α and MTH-1 were analyzed by western blotting and q RT-PCR, respectively. In order to determine the effect of HIF-1α on the expression of MTH-1 and the amount of 8-oxodeoxyguanosine triphosphate(d GTP) in SW480 and HT-29 cells, HIF-1α was silenced with small interfering RNA(si RNA). Growth studies were conducted on cells with HIF-1α inhibition using a xenograft tumor model. Finally, MTH-1 protein was detected by western blotting in vivo.RESULTS: High MTH-1 m RNA expression was detected in 64.2% of cases(54/84), and this was significantly correlated with tumor stage(P = 0.023) and size(P = 0.043). HIF-1α protein expression was correlated significantly with MTH-1 expression(R = 0.640; P < 0.01) in human CRC tissues. Hypoxic stress induced m RNA and protein expression of MTH-1 in SW480 and HT-29 cells. Inhibition of HIF-1α by si RNA decreased the expression of MTH-1 and led to the accumulation of 8-oxo-d GTP in SW480 and HT-29 cells. In the in vivo xenograft tumor model, expression of MTH-1 was decreased in the HIF-1α si RNA group, and the tumor volume was much smaller than that in the mock si RNA group.CONCLUSION: MTH-1 expression in CRC cells was upregulated via HIF-1α in response to hypoxic stress, emphasizing the crucial role of HIF-1α-induced MTH-1 in tumor growth.展开更多
AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury. METHODS: Sin...AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury. METHODS: Sinusoidal endothelial cell lines ECV-304 were cultured and divided into four groups: control group, cells were cultured in complete DMEM medium; cold anoxia/warm reoxygenation (A/R) group, cells were preserved in a 4℃ UW solution in a mixture of 95% N2 and 5% CO2 for 24 h; anoxia-preconditioning (APC) group, cells were treated with 4 cycles of short anoxia and reoxygenation before prolonged anoxia- preconditioning treatment; and anoxia-preconditioning and hypoxia inducible factor-1α (HIF-1α) inhibitor (I-HIF-1) group, cells were pretreated with 5 μm of HIF-1α inhibitor NS398 in DMEM medium before subjected to the same treatment as group APC. After the anoxia treatment, each group was reoxygenated in a mixture of 95% air and 5% CO2 incubator for 6 h. Cytoprotections were evaluated by cell viabilities from Trypan blue, lactate dehydrogenase (LDH) release rates, and intracellular cell adhesion molecule-1 (ICAM-1) expressions. Expressions of HIF-1α mRNA and HIF-1α protein from each group were determined by the RT-PCR method and Western blotting, respectively. RESULTS: Ischemia preconditioning increased cell viability, and reduced LDH release and ICAM-1 expressions. Ischemia preconditioning also upregulated the HIF-1α mRNA level and HIF-1α protein expression. However, all of these changes were reversed by HIF-1α inhibitor NS398.CONCLUSION: Ischemia preconditioning effectively inhibited cold hypoxia/warm reoxygenation injury to endothelial cells, and the authors showed for the first time HIF-1α is causally linked to the protective effects of ischemic preconditioning on endothelial cells.展开更多
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
基金Supported by The Ministerio de de Sanidad y Consumo(PI081988)CIBER-EHD,Instituto Carlos Ⅲ,Madrid and Ministerio de Asuntos Exteriores y de Cooperación Internacionales(A/020255/08 and A/02987/09),Madrid
文摘AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.
基金supported by grants-in-aid from the 333 Project(No.2007099)Project of the Health Department,Jiangsu Province,China(H200523)
文摘BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to explore the relationship between HIF-1αexpression and hepatocarcinogenesis at the early stage of HCC. METHODS:A hepatoma model was made with 2-fluorenyl- acetamide(2-FAA)in male Sprague-Dawley rats.Morphological changes of rat hepatocytes were assessed pathologically (HE staining).The dynamic expression of hepatic and circulating HIF-1αwas quantitatively analyzed by ELISA. The gene fragments of hepatic HIF-1αmRNA were amplified by RT-PCR and confirmed by sequencing.The cellular distribution of hepatic HIF-1αexpression was confirmed by immunohistochemistry. RESULTS:Histological examination confirmed granulelike degeneration to atypical hyperplasia and HCC development in rat hepatocytes and progressive increases in the levels of hepatic and circulating HIF-1αand its gene expression during the course.The levels of HIF-1α expression in the liver and blood of rats with hepatoma were significantly higher than those in normal ratsand those with degeneration.Immunohistochemical analysis confirmed the positive expression and hepatocyte distribution of HIF-1αin the development of rat hepatoma. A positive relationship was found between HIF-1α expression in the liver and blood(P<0.01). CONCLUSIONS:The above observations support the hypothesis that the overexpression of HIF-1αand its gene are closely associated with the malignant transformation of hepatocytes and play an important role at the stage of hepatocarcinogenesis.
基金Supported by the National Natural Science Foundation of China,No.30800511
文摘AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.
基金Supported by Liaoning S and T Project,No.2015020269Doctor fund of Liaoning Province Cancer Hospital and Institute,No.Z1410
文摘AIM To investigate the relationship between hypoxia-inducible factor-1α(HIF-1α), prolyl 4-hydroxylase beta(P4 HB) expression, and clinicopathologic parameters, as well as the prognostic value of these genes for patients with gastric cancer(Gc).METHODS Hypoxia is a critical factor that shapes the Gc microenvironment. In previous reports, we have demonstrated that P4 HB is a potential target of HIF-1α. In the present study, gene expression profiling interactive analysis(GEPIA) was used to analyze the relationship between P4 HB and hypoxia-associated genes. To this end, 428 Gc tissue samples were used to analyze the expression of HIF-1α and P4 HB via immunohistochemical staining. Patient samples were classified as having weak-expression or over-expression both in terms of HIF-1α and P4 HB. Correlations between biomarkers and clinicopathological factors were analyzed to predict survival. RESULTS P4 HB demonstrated a positive correlation with hypoxiaassociated genes(P < 0.05). HIF-1α and P4 HB overexpression have a significant correlation with TNM staging(χ2 = 23.32, P = 0.00; χ2 = 65.64, P = 0.00) and peritoneum cavity metastasis(χ2 = 12.67, P = 0.00; χ2 = 39.29, P = 0.00). In univariate analysis, patients with a high HIF-1α expression trend had a shorter disease-free survival(DFS: 44.80 mo vs 22.06 mo) and overall survival(OS: 49.58 mo vs 39.92 mo). P4 HB overexpression reflected similar results: patients with over-expression of P4 HB had a shorter survival time than those with weak-expression(DFS: 48.03 mo vs 29.64 mo, OS: 52.48 mo vs 36.87 mo). Furthermore, HIF-1α is also a clinicopathological predictor of dismal prognosis according to multivariate analysis(DFS, 95%c I: 0.52-0.88, P < 0.00; OS, 95%c I: 0.50-0.85, P < 0.00). However, P4 HB was meaningful in DFS(95%c I: 0.58-1.00, P < 0.05) but not in OS(95%c I: 0.72-1.23, P > 0.05).CONCLUSION Overexpression of HIF-1α and P4 HB is associated with poor prognosis in patients with Gc. Thus, these genes may be potential prognostic biomarker candidates in GC.
基金supported by grants from VA merit awards(BX3401 and RX2090)
文摘Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide(NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha(HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione(GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.
基金Supported by Grant from Fondazione Cariplo,No.2011-0439
文摘AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.
基金Supported by The National Natural Science Foundation of ChinaNo.81330013 and No.81272078 to Yang H+2 种基金No.81270451 to Xiao WDthe Program for Changjiang Scholars and Innovative Research Team in UniversitiesNo.13051 to Yang H
文摘AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were detected in human CRC tissues by immunohistochemistry and quantitative realtime polymerase chain reaction(q RT-PCR). SW480 and HT-29 cells were exposed to normoxia or hypoxia. Protein and m RNA levels of HIF-1α and MTH-1 were analyzed by western blotting and q RT-PCR, respectively. In order to determine the effect of HIF-1α on the expression of MTH-1 and the amount of 8-oxodeoxyguanosine triphosphate(d GTP) in SW480 and HT-29 cells, HIF-1α was silenced with small interfering RNA(si RNA). Growth studies were conducted on cells with HIF-1α inhibition using a xenograft tumor model. Finally, MTH-1 protein was detected by western blotting in vivo.RESULTS: High MTH-1 m RNA expression was detected in 64.2% of cases(54/84), and this was significantly correlated with tumor stage(P = 0.023) and size(P = 0.043). HIF-1α protein expression was correlated significantly with MTH-1 expression(R = 0.640; P < 0.01) in human CRC tissues. Hypoxic stress induced m RNA and protein expression of MTH-1 in SW480 and HT-29 cells. Inhibition of HIF-1α by si RNA decreased the expression of MTH-1 and led to the accumulation of 8-oxo-d GTP in SW480 and HT-29 cells. In the in vivo xenograft tumor model, expression of MTH-1 was decreased in the HIF-1α si RNA group, and the tumor volume was much smaller than that in the mock si RNA group.CONCLUSION: MTH-1 expression in CRC cells was upregulated via HIF-1α in response to hypoxic stress, emphasizing the crucial role of HIF-1α-induced MTH-1 in tumor growth.
文摘AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury. METHODS: Sinusoidal endothelial cell lines ECV-304 were cultured and divided into four groups: control group, cells were cultured in complete DMEM medium; cold anoxia/warm reoxygenation (A/R) group, cells were preserved in a 4℃ UW solution in a mixture of 95% N2 and 5% CO2 for 24 h; anoxia-preconditioning (APC) group, cells were treated with 4 cycles of short anoxia and reoxygenation before prolonged anoxia- preconditioning treatment; and anoxia-preconditioning and hypoxia inducible factor-1α (HIF-1α) inhibitor (I-HIF-1) group, cells were pretreated with 5 μm of HIF-1α inhibitor NS398 in DMEM medium before subjected to the same treatment as group APC. After the anoxia treatment, each group was reoxygenated in a mixture of 95% air and 5% CO2 incubator for 6 h. Cytoprotections were evaluated by cell viabilities from Trypan blue, lactate dehydrogenase (LDH) release rates, and intracellular cell adhesion molecule-1 (ICAM-1) expressions. Expressions of HIF-1α mRNA and HIF-1α protein from each group were determined by the RT-PCR method and Western blotting, respectively. RESULTS: Ischemia preconditioning increased cell viability, and reduced LDH release and ICAM-1 expressions. Ischemia preconditioning also upregulated the HIF-1α mRNA level and HIF-1α protein expression. However, all of these changes were reversed by HIF-1α inhibitor NS398.CONCLUSION: Ischemia preconditioning effectively inhibited cold hypoxia/warm reoxygenation injury to endothelial cells, and the authors showed for the first time HIF-1α is causally linked to the protective effects of ischemic preconditioning on endothelial cells.