期刊文献+
共找到73,796篇文章
< 1 2 250 >
每页显示 20 50 100
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis
1
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROSS-SECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
2
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
Advantages of nanocarriers for basic research in the field of traumatic brain injury 被引量:1
3
作者 Xingshuang Song Yizhi Zhang +1 位作者 Ziyan Tang Lina Du 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期237-245,共9页
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researche... A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems.In this review,we summarize the epidemiology,basic pathophysiology,current clinical treatment,the establishment of models,and the evaluation indicators that are commonly used for traumatic brain injury.We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles.Nanocarriers can overcome a variety of key biological barriers,improve drug bioavailability,increase intracellular penetration and retention time,achieve drug enrichment,control drug release,and achieve brain-targeting drug delivery.However,the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic. 展开更多
关键词 blood-brain barriers brain targeting central nervous system extracellular vesicles inflammatory factor microglial cell NANOCARRIERS nanoparticles neural restoration traumatic brain injury
下载PDF
Application of artificial hibernation technology in acute brain injury 被引量:1
4
作者 Xiaoni Wang Shulian Chen +5 位作者 Xiaoyu Wang Zhen Song Ziqi Wang Xiaofei Niu Xiaochu Chen Xuyi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1940-1946,共7页
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ... Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application. 展开更多
关键词 cute brain injury artificial hibernation HYPOTHERMIA low metabolism mild hypothermia
下载PDF
Exploring cerebral structural and functional abnormalities in a mouse model of post-traumatic headache induced by mild traumatic brain injury 被引量:1
5
作者 Dan Yang Bin-Bin Nie +6 位作者 Jin-Gang He Zong-Qiang Lv Feng-Feng Mo Si-Yi Ouyang Jie Wang Ju-Xiang Chen Tao Tao 《Zoological Research》 SCIE CSCD 2024年第3期648-662,共15页
Mild traumatic brain injury(mTBI)-induced post-traumatic headache(PTH)is a pressing public health concern and leading cause of disability worldwide.Although PTH is often accompanied by neurological disorders,the exact... Mild traumatic brain injury(mTBI)-induced post-traumatic headache(PTH)is a pressing public health concern and leading cause of disability worldwide.Although PTH is often accompanied by neurological disorders,the exact underlying mechanism remains largely unknown.Identifying potential biomarkers may prompt the diagnosis and development of effective treatments for mTBI-induced PTH.In this study,a mouse model of mTBI-induced PTH was established to investigate its effects on cerebral structure and function during short-term recovery.Results indicated that mice with mTBI-induced PTH exhibited balance deficits during the early post-injury stage.Metabolic kinetics revealed that variations in neurotransmitters were most prominent in the cerebellum,temporal lobe/cortex,and hippocampal regions during the early stages of PTH.Additionally,variations in brain functional activities and connectivity were further detected in the early stage of PTH,particularly in the cerebellum and temporal cortex,suggesting that these regions play central roles in the mechanism underlying PTH.Moreover,our results suggested that GABA and glutamate may serve as potential diagnostic or prognostic biomarkers for PTH.Future studies should explore the specific neural circuits involved in the regulation of PTH by the cerebellum and temporal cortex,with these two regions potentially utilized as targets for non-invasive stimulation in future clinical treatment. 展开更多
关键词 Post-traumatic headache(PTH) Mild traumatic brain injury(mTBI) Metabolic kinetics FMRI CEREBELLUM
下载PDF
The role of snapin in regulation of brain homeostasis
6
作者 Jiawen Li Xinqi Huang +5 位作者 Yumei An Xueshi Chen Yiyang Chen Mingyuan Xu Haiyan Shan Mingyang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1696-1701,共6页
Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the... Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance.Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses.Recently,many researchers have reported the association between snapin and neurologic and psychiatric disorders,demonstrating that snapin can improve brain homeostasis.Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae.This article aims to explo re the role of snapin in restoring brain homeostasis after injury or diseases,highlighting its significance in maintaining brain homeostasis and treating brain diseases.Additionally,it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections,with the objective of determining the clinical potential of snapin in maintaining brain homeostasis. 展开更多
关键词 brain homeostasis DIABETES neurological diseases snapin traumatic brain injury vesicle fusion
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:1
7
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Use of donepezil for neurocognitive recovery after brain injury in adult and pediatric populations:a scoping review
8
作者 Avery L.Miller Nathan K.Evanson J.Michael Taylor 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1686-1695,共10页
There are few pharmacologic options for the treatment of cognitive deficits associated with traumatic brain injury in pediatric patients.Acetylcholinesterase inhibitors such as donepezil have been evaluated in adult p... There are few pharmacologic options for the treatment of cognitive deficits associated with traumatic brain injury in pediatric patients.Acetylcholinesterase inhibitors such as donepezil have been evaluated in adult patients after traumatic brain injury,but relatively less is known about the effect in pediatric populations.The goal of this review is to identify knowledge gaps in the efficacy and safety of acetylcholinesterase inhibito rs as a potential a djuvant treatment fo r neurocognitive decline in pediatric patients with traumatic brain injury.Investigators queried PubMed to identify literature published from database inception thro ugh June 2023 desc ribing the use of donepezil in young adult traumatic brain injury and pediatric patients with predefined conditions.Based on preselected search criteria,340 unique papers we re selected for title and abstra ct screening.Thirty-two reco rds were reviewed in full after eliminating preclinical studies and pape rs outside the scope of the project.In adult traumatic brain injury,we review results from 14 papers detailing 227 subjects where evidence suggests donepezil is well tole rated and shows both objective and patient-reported efficacy for reducing cognitive impairment.In children,3 pape rs report on 5 children recovering from traumatic brain injury,showing limited efficacy.An additional 15 pediatric studies conducted in populations at risk for cognitive dysfunction provide a broader look at safety and efficacy in 210 patients in the pediatric age group.Given its promise for efficacy in adults with traumatic brain injury and tole rability in pediatric patients,we believe further study of donepezil for children and adolescents with traumatic brain injury is warranted. 展开更多
关键词 acetylcholinesterase inhibitor ADULT COGNITION DONEPEZIL PEDIATRICS traumatic brain injury
下载PDF
Endorepellin downregulation promotes angiogenesis after experimental traumatic brain injury
9
作者 Qian Zhang Yao Jing +10 位作者 Qiuyuan Gong Lin Cai Ren Wang Dianxu Yang Liping Wang Meijie Qu Hao Chen Yaohui Tang Hengli Tian Jun Ding Zhiming Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1092-1097,共6页
Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavio... Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways. 展开更多
关键词 ANGIOGENESIS controlled cortical impact endorepellin neurological function traumatic brain injury
下载PDF
Effect of cognitive training on brain dynamics
10
作者 吕贵阳 徐天勇 +3 位作者 陈飞燕 朱萍 王淼 何国光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期529-536,共8页
The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to... The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks. 展开更多
关键词 brian dynamics functional brain networks cognitive training abacus-based mental calculation
下载PDF
Management of Traumatic Brain Injuries at the Kara Regional Hospital
11
作者 Tamegnon Dossouvi Tchaa Hodabalo Towoezim +3 位作者 Abdel Kader Moumouni Kokou Kanassoua Iroukora Kassegne Ekoue David Dosseh 《Surgical Science》 2024年第2期19-27,共9页
Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and e... Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and evolutionary aspects of TBI. Materials and Methods: This was a prospective, descriptive study conducted from 1 April 2022 to 31 March 2023 on patients admitted to and treated for cranioencephalic trauma in the General Surgery department of Kara Regional Hospital. Results: Eighty-three (83) patients with cranioencephalic trauma were managed out of 773 patients admitted to the department during the study period. The mean age was 34 ± 14.98 years and the sex ratio was 3.6 in favour of men. Motorbike taxi drivers were the social group most affected (n = 33, 40%). The causes of trauma were dominated by public road accidents (n = 80;96%). TBI was mild (n = 40;48%), moderate (n = 35;42%) and severe (n = 8;10%). Cerebral CT scans were performed in 19 patients (23%). Cerebral contusion (n = 4) was the most frequent cerebral lesion. Six patients (7%) with severe head injuries were transferred to Kara University Hospital. Six deaths (7%) occurred in patients with severe head injuries. The main sequelae were intermittent headaches in all patients reviewed, and memory problems (6%). Conclusion: Traumatic brain injuries are common at Kara Regional Hospital. Severe cranial trauma is less frequent but leads to death because of financial difficulties and limited technical facilities. 展开更多
关键词 Traumatic brain Injury Road Accident MOTORCYCLIST Cerebral Contusion TOGO
下载PDF
Neurotrophins and neural stem cells in posttraumatic brain injury repair
12
作者 Wenwen Guo Ke Liu +6 位作者 Yinghua Wang Xu Ge Yifan Ma Jing Qin Caiqin Zhang Ya Zhao Changhong Shi 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第1期12-23,共12页
Traumatic brain injury(TBI)is the main cause of disability,mental health disorder,and even death,with its incidence and social costs rising steadily.Although different treatment strategies have been developed and test... Traumatic brain injury(TBI)is the main cause of disability,mental health disorder,and even death,with its incidence and social costs rising steadily.Although different treatment strategies have been developed and tested to mitigate neurological decline,a definitive cure for these conditions remains elusive.Studies have revealed that vari-ous neurotrophins represented by the brain-derived neurotrophic factor are the key regulators of neuroinflammation,apoptosis,blood-brain barrier permeability,neurite regeneration,and memory function.These factors are instrumental in alleviating neu-roinflammation and promoting neuroregeneration.In addition,neural stem cells(NSC)contribute to nerve repair through inherent neuroprotective and immunomodulatory properties,the release of neurotrophins,the activation of endogenous NSCs,and in-tercellular signaling.Notably,innovative research proposals are emerging to combine BDNF and NSCs,enabling them to synergistically complement and promote each other in facilitating injury repair and improving neuron differentiation after TBI.In this review,we summarize the mechanism of neurotrophins in promoting neurogen-esis and restoring neural function after TBI,comprehensively explore the potential therapeutic effects of various neurotrophins in basic research on TBI,and investigate their interaction with NSCs.This endeavor aims to provide a valuable insight into the clinical treatment and transformation of neurotrophins in TBI,thereby promoting the progress of TBI therapeutics. 展开更多
关键词 mutual effect neural stem cells neurological function NEUROTROPHINS traumatic brain injury
下载PDF
Neuropsychological Profile of a Patient with Acquired Brain Damage Following Vascular Lesion of the Left Anterior Cingulate Cortex
13
作者 Jimmy Zúñiga-Márquez Lina Borda-Camargo +4 位作者 Diego Buitrago-Mora Lorely Guerra-Valdés Laura González Patricia Quintero-Cusgüen Nataly Gutierrez-Ávila 《Neuroscience & Medicine》 2024年第1期66-75,共10页
Stroke is a physiological alteration associated with changes in blood flow that can result in sudden-onset cognitive impairment. It has a heterogenous clinical presentation with varying degrees of severity correlated ... Stroke is a physiological alteration associated with changes in blood flow that can result in sudden-onset cognitive impairment. It has a heterogenous clinical presentation with varying degrees of severity correlated with specific central nervous system zones or areas, and its prognosis is uncertain. This case study describes a 62-year-old male patient with acquired brain damage of the anterior cingulate cortex as a result of an ischemic event in the territory of the left anterior cerebral artery. Cognitive function was assessed using the neuropsychological executive function and frontal lobe test battery (BANFE-2) as well as other neuropsychological tests. The results show a profile of higher mental functions characterized by the presence of dysexecutive syndrome with marked behavioral alteration and diencephalic amnesia. . 展开更多
关键词 Ischemic Stroke Anterior Cingulate Cortex NEUROPSYCHOLOGY Acquired brain Damage
下载PDF
The Effects of Mindfulness-Based Interventions on Symptoms of Mild Traumatic Brain Injury:A Systematic Review
14
作者 Qiqi Feng Zhijian Huang +1 位作者 Yanqiu Wang Bin Wang 《International Journal of Mental Health Promotion》 2024年第6期417-428,共12页
Mindfulness-based interventions(MBIs)are emerging non-pharmacological treatments for mild traumatic brain injury(mTBI).In this systematic review,the authors aimed to evaluate the potential efficacy of MBIs to provide ... Mindfulness-based interventions(MBIs)are emerging non-pharmacological treatments for mild traumatic brain injury(mTBI).In this systematic review,the authors aimed to evaluate the potential efficacy of MBIs to provide recommendations for treating patients with mTBI.We searched of the English literature on MBIs for patients with mTBI as of 01 September,2023,using the PubMed,Web of Science,PsycINFO,and Scopus databases.One author performed data extraction and quality scoring of the included literature according to the proposed protocol,and another conducted the review.The review was not registered.A total of 11 studies met the final inclusion criteria,5 of which involved military personnel(veterans).MBIs covered in this review include goal-oriented attention self-regulation(GOALS),mindfulness-based stress reduction(MBSR),acceptance and commitment therapy(ACT),and so on.Research shows that MBSR mainly reduces mental fatigue symptoms in mTBI patients,and GOALS tend to improve their cognitive function.The effect of MBIs on psychological symptoms needs further exploration.Other studies,such as mindfulness-based group therapy and intervention studies targeting mTBI military personnel,are relatively sparse.MBIs have specific effects on mental fatigue and cognitive dysfunction in patients with mTBI.However,the effect on psychological distress and the sustained effectiveness across all symptoms still need further exploration.Considering the particularity of military personnel suffering from mTBI,researchers need to do more intervention studies targeting mTBI military personnel.Therefore,the design of future MBIs trials for mTBI patients’needs to take into account all the factors,such as different populations and severity of traumatic brain injury,to verify the effectiveness of MBIs in alleviating mTBI symptoms and explore the mechanism of intervention. 展开更多
关键词 MINDFULNESS traumatic brain injury MILD
下载PDF
Effect Study of the Recombinant Human Brain Natriuretic Peptide in Patients with Heart Failure Combined with Hypotension
15
作者 Yuhui Ding Keping Yang 《Journal of Biosciences and Medicines》 2024年第6期1-6,共6页
Objective: This paper aims to investigate the effect of applying recombinant human brain natriuretic peptide in patients with heart failure combined with hypotension. Recombinant human brain natriuretic peptide is a s... Objective: This paper aims to investigate the effect of applying recombinant human brain natriuretic peptide in patients with heart failure combined with hypotension. Recombinant human brain natriuretic peptide is a synthetic polypeptide drug that is primarily used to treat acute heart failure. Its mechanism of action closely mimics that of human endogenous brain natriuretic peptide. By binding to receptors on cardiomyocytes, it exerts its pharmacological effects. Methods: For the study, 76 heart failure patients with hypotension were selected from our hospital between May 2022 and June 2023. These patients were divided into two groups: a control group and an observation group, each comprising 38 patients. The control group received dopamine treatment, while the observation group was treated with recombinant brain natriuretic peptide. The objective was to compare the effects of the treatments in both groups by analyzing cardiac function indices and levels of vasoactive substances to identify any significant differences in outcomes. Results: The overall response rate of the patients in the observation group and the control group was 94.74% and 73.68%, significantly higher as compared with the observation group (P 0.05). After the following treatment, BNP, ANNP and urine output in the observation group were significantly different compared with the control group, of the statistical significance (P Conclusion: For the treatment of heart failure patients with hypotension, the clinical application of recombinant human brain natriuretic peptide is the most ideal, and significantly improves the cardiac function of patients, which is worth popularizing. 展开更多
关键词 Recombinant Human brain Natriuretic Peptide Heart Failure HYPOTENSION
下载PDF
Expectations and Level of Satisfaction of the Patient with Parkinson’s Disease Undergoing Deep Brain Stimulation Surgery at the National Institute of Neurology and Neurosurgery
16
作者 Paola Bazán-Rodríguez Eduardo Ichikawa-Escamilla +4 位作者 Etienne Reséndiz-Henríquez Carlos E. Martínez-Cortés Amin Cervantes-Arriaga Mayela Rodríguez-Violante Lisette Bazán-Rodríguez 《Advances in Parkinson's Disease》 CAS 2024年第1期1-7,共7页
Background: Deep brain stimulation (DBS) is an established treatment for patients with advanced Parkinson’s disease (PD). Reports show continued patient satisfaction after surgery despite not maintaining clinical imp... Background: Deep brain stimulation (DBS) is an established treatment for patients with advanced Parkinson’s disease (PD). Reports show continued patient satisfaction after surgery despite not maintaining clinical improvement as measured by evolution scales. Objectives: The present study sought to explore expectations and level of satisfaction in patients after DBS surgery with a semi-structured questionnaire and subsequent correlation with functional scales, Quality of Life (QoL), and motor and non-motor symptoms. Methods: We performed descriptive statistics to represent demographic data, Wilcoxon rank tests to determine significant differences, and Spearman correlation between the applied scales. Results: We evaluated 20 patients with a history of DBS surgery. 45% were female, with a mean age of 55.7 ± 14.15 years, a mean disease duration of 13.42 ± 8.3 years, and a mean time after surgery of 3.18 ± 1.86 years. Patients reported surgery meeting expectations in 85.5% and continued satisfaction in 92%. These two variables showed a significant correlation. Conclusions: This sample of patients remained satisfied after DBS surgery, although we found no differences in motor and non-motor clinimetric scales. Further studies are needed to confirm the importance of assessing quality of life in patients with DBS. 展开更多
关键词 Parkinson’s Disease Quality of Life Deep brain Stimulation Patient Satisfaction
下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration
17
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials BIOMATERIALS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
Placenta-derived mesenchymal stem cells attenuate secondary brain injury after controlled cortical impact in rats by inhibiting matrix metalloproteinases
18
作者 PING YANG YUANXIANG LAN +2 位作者 ZHONG ZENG YAN WANG HECHUN XIA 《BIOCELL》 SCIE 2024年第1期149-162,共14页
Background:As a form of biological therapy,placenta-derived mesenchymal stem cells(PDMSCs)exhibit considerable promise in addressing the complex pathological processes of traumaticbrain injury(TBI)due to their multi-t... Background:As a form of biological therapy,placenta-derived mesenchymal stem cells(PDMSCs)exhibit considerable promise in addressing the complex pathological processes of traumaticbrain injury(TBI)due to their multi-target and multi-pathway mode of action.Material&Methods:This study investigates the protective mechanisms and benefits of PDMSCs in mitigating the effects of controlled cortical impact(CCI)in rats and glutamate-induced oxidative stress injury in HT22 cells in vitro.Our primary objective is to provide evidence supporting the clinical application of PDMSCs.Results:In the in vivo arm of our investigation,we observed a swift elevation of matrix metalloproteinase-9(MMP-9)in the proximal cortex of injured brain tissues after CCI.PDMSCs,distinguished by their heightened expression of metalloproteinase tissue inhibitors-1 and-2(TIMP-1 and TIMP-2):were intravenously administered via the caudal vein.This intervention yielded significant reductions in the permeability of the blood-brain barrier(BBB):the extent of brain edema,the levels of inflammatory cytokines IL-1βand TNF-αin damaged brain tissue,and the activation status of microglia in CCI-afflicted rats.In the realm of in vitro experiments,PDMSC-conditioned media demonstrated substantial reductions in mortality rates and cleaved caspase-3 levels in glutamate-induced HT22 cells compared with conventional media.Notably,this advantage was negated upon the introduction of neutralizing antibodies targeting TIMP-1 and TIMP-2.Conclusion:Collectively,our findings underscore the potential of PDMSCs in alleviating oxidative stress injury and secondary brain injury in the pathological process of TBI. 展开更多
关键词 Traumatic brain injury Mesenchymal stem cells Oxidative stress Matrix metalloproteinases
下载PDF
Versatile strategies for adult neurogenesis:avenues to repair the injured brain
19
作者 Junyi Zhao Siyu Liu +1 位作者 Xianyuan Xiang Xinzhou Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期774-780,共7页
Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neur... Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies. 展开更多
关键词 adult neurogenesis glia-to-neuron conversion ischemic stroke neurogenic niche NEUROINFLAMMATION stem cell transplantation traumatic brain injury
下载PDF
P7C3-A20 treats traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis
20
作者 Zhiqing Yang Zhenchao Wang +4 位作者 Xiaoqi Deng Lingxin Zhu Zhaomeng Song Changyu Cao Xinran Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1078-1083,共6页
Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various disea... Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various diseases,including ischemic stroke and neurodegenerative diseases.However,whether P7C3-A20 has a therapeutic effect on traumatic brain injury and its possible molecular mechanisms are unclear.Therefore,in the present study,we investigated the therapeutic effects of P7C3-A20 on traumatic brain injury and explored the putative underlying molecular mechanisms.We established a traumatic brain injury rat model using a modified weight drop method.P7C3-A20 or vehicle was injected intraperitoneally after traumatic brain injury.Severe neurological deficits were found in rats after traumatic brain injury,with deterioration in balance,walking function,and learning memory.Furthermore,hematoxylin and eosin staining showed significant neuronal cell damage,while terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining indicated a high rate of apoptosis.The presence of autolysosomes was observed using transmission electron microscope.P7C3-A20 treatment reversed these pathological features.Western blotting showed that P7C3-A20 treatment reduced microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ)autophagy protein,apoptosis-related proteins(namely,Bcl-2/adenovirus E1B 19-kDa-interacting protein 3[BNIP3],and Bcl-2 associated x protein[Bax]),and elevated ubiquitin-binding protein p62(p62)autophagy protein expression.Thus,P7C3-A20 can treat traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis. 展开更多
关键词 APOPTOSIS AUTOPHAGY CORTEX HIPPOCAMPUS motor function P7C3-A20 traumatic brain injury
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部