Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten...Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.展开更多
As a fundamental component of an automobile engine’s timing chain drive system, the hydraulic automatic tensioner signifcantly enhances fuel economy while minimizing system vibrations and noise. However, there is a n...As a fundamental component of an automobile engine’s timing chain drive system, the hydraulic automatic tensioner signifcantly enhances fuel economy while minimizing system vibrations and noise. However, there is a noticeable lack of research on automatic hydraulic tensioners. This study presents a comprehensive calculation approach for the principal parameters of a hydraulic automatic tensioner. An efective method, grounded in hydraulics and multibody dynamics, was introduced for estimating the dynamic response of such a tensioner. The simulation model developed for the hydraulic tensioner is characterized by its rapid dynamic response, consistent operation, and high accuracy. The dynamic behavior of the tensioner was analyzed under varying boundary conditions, using sinusoidal signal excitation. It was observed that the maximum damping force increases with a decreasing leakage gap. Conversely, an increase in oil temperature or air content leads to a decrease in the maximum damping force. The reaction forces derived from these calculations align well with experimental results. This calculation and simulation approach ofers considerable value for the design of innovative hydraulic tensioners. It not only streamlines the design phase, minimizes the number of trials, and reduces product costs, but also provides robust insights for evaluating the performance of hydraulic tensioners.展开更多
To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis o...To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators.展开更多
Threshold voltage (V_(TH)) hysteresis affects the dynamic characteristics of silicon carbide (SiC) MOSFETs, whichin turn affects reliability of a device. In this paper, a dynamichysteresis curve is proposed as an eval...Threshold voltage (V_(TH)) hysteresis affects the dynamic characteristics of silicon carbide (SiC) MOSFETs, whichin turn affects reliability of a device. In this paper, a dynamichysteresis curve is proposed as an evaluation method of theinfluence of V_(TH) hysteresis on the switching characteristics ofSiC MOSFETs. This method can eliminate the impact of triggerlevel and obtain the dynamic V_(TH). Furthermore, the influence ofparasitic parameters on dynamic V_(TH) hysteresis is theoreticallyanalyzed. Double pulse tests under different parasitic parametersare performed on three SiC MOSFETs with different gatestructures to verify the analysis. Results show that gate resistance(R_(G)) and source inductance (L_(S)) have more significant effectson dynamic V_(TH) hysteresis compared with gate inductance anddrain inductance. V_(TH) hysteresis phenomenon weakens withincrease of R_(G) or L_(S), which is related to device structure.The results presented in this paper can provide guidance forthe design of circuit parasitic parameters of SiC MOSFETs toregulate V_(TH) hysteresis.展开更多
By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and ...By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and compensation behaviors) of the spin-l/2 hexagonal Ising nanowire (HIN) system with core/shell structure have been presented. The hysteresis curves are obtained for different values of the system parameters, in both ferromagnetic and antiferromagnetic cases. It has been shown that the system only undergoes a second-order phase transition. Moreover, from the thermal variations of the total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types.展开更多
In this paper, the effect of alumina thickness on Al2O3/InP interface with post deposition annealing (PDA) in the oxygen ambient is studied. Atomic layer deposited (ALD) Al2O3 films with four different thickness v...In this paper, the effect of alumina thickness on Al2O3/InP interface with post deposition annealing (PDA) in the oxygen ambient is studied. Atomic layer deposited (ALD) Al2O3 films with four different thickness values (5 nm, 7 nm, 9 nm, 11 rim) are deposited on InP substrates. The capacitance-voltage (C-V) measurement shows a negative correlation between the alumina thickness and the frequency dispersion. The X-ray photoelectronspectroscopy (XPS) data present significant growth of indium-phosphorus oxide near the Al2O3/InP interface, which indicates serious oxidation of InP during the oxygen annealing. The hysteresis curve shows an optimum thickness of 7 nm after PDA in an oxygen ambient at 500 ℃ for 10 min. It is demonstrated that both sides of the interface are impacted by oxygen during post deposition annealing. It is suggested that the final state of the interface is of reduced positively charged defects on Al2O3 side and oxidized InP, which degrades the interface.展开更多
This paper presents a study of the relationship between the magnetic properties and microstructure of nanocomposite Ni/MnO, Ni/CoO, Co/MnO, Co/CoO. The objective is to understand how the coupling interface FM/AFM (fe...This paper presents a study of the relationship between the magnetic properties and microstructure of nanocomposite Ni/MnO, Ni/CoO, Co/MnO, Co/CoO. The objective is to understand how the coupling interface FM/AFM (ferromagnetic/anti-ferromagnetic) manifests itself in magnetic response of these materials to an applied field. Sample preparation was performed using mechanochemical synthesis by means of a ball mill planetary type high power at normal atmosphere. The characterization was done by XRD (X-ray diffraction), SEM (scanning electron microscopy) and VSM (vibrating sample magnetometry). Analyzing the XRD peaks of the samples studied, there was a decrease in the average particle diameter with increasing milling time, which is important in the magnetic interactions of the atoms of the surface. In addition, the diffraction pattern showed formation of new phases by oxidation interfering with the magnetic measurements. Analyses by SEM show chipboard multiform nano- and micrometer-sized grains on the surface of the clusters being responsible for the interaction. The magnetic measurements show a strong coupling between the phases present in nanocomposites showing once again that the MS (mechanosynthesis) is a powerful technique for this kind of purpose. The effect of the decrease in crystallite size leads to large variations of magnetic properties of the material which have been specifically observed changes in HC (coercive field) in the RM (remanent magnetization) and SM (saturation magnetization). The decrease in crystallite size in the course of grinding intensifies the effects that depend on the surface-to-volume ratio of the material. M vs. T measures were taken for different values of applied field and found a jump in the moment of the sample near the N6el temperature of the antiferromagnetic.展开更多
This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at t...This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.展开更多
This paper presents a constitutive model based on Ramberg-Osgood equation to describe the hysteresis material behavior of structural carbon steel with nominal yield strength between 235 to 420 N/mm^2. The proposed mod...This paper presents a constitutive model based on Ramberg-Osgood equation to describe the hysteresis material behavior of structural carbon steel with nominal yield strength between 235 to 420 N/mm^2. The proposed model was calibrated against a series of cyclic material tests with strain amplitude varying from 0.5% to 2.0%. A simple relationship between the modular parameter K and the yield strengthfy was proposed. The calibrated Ramberg-Osgood model revealed excellent agreement with the experimental results and captured further the experimental behavior of test specimens with nominal yield strength of 460 N/mm^2. The proposed constitutive model was also adopted in conjunction with the combined kinematic/isotropic materials description in ABAQUS to mimic a full scale experimental test under cyclic loading. The numerical results revealed close agreement with the experimental observations.展开更多
Bond behavior of corroded reinforcement in concrete wrapped with carbon fiber reinforced polymer (CFRP) under cyclic loading is experimentally investigated. An electrolyte corrosion technique is used to accelerate the...Bond behavior of corroded reinforcement in concrete wrapped with carbon fiber reinforced polymer (CFRP) under cyclic loading is experimentally investigated. An electrolyte corrosion technique is used to accelerate the corrosion of the steel bar in cylindrical concrete specimens. Wrapped specimens are strengthened with one layer of CFRP after the reinforcements are corroded. The experimental parameters investigated include: corrosion level, CFRP wrapped and number of loading cycles. Test results indicate that bond strength and area of hysteretic curve of CFRP wrapped specimens are larger than those of the unwrapped specimens. With increasing the number of loading cycles, the bond strength and area of hysteretic curve decrease gradually, especially at the 1st cyclic loading. The CFRP wrapping reduces the bond degradation rate effectively and prevents the bond-splitting failure of the corroded concrete specimens.展开更多
Spinel ferrite Ni_(0.08)Mn_(0.90)Zn_(0.02)Fe_(2)O_(4)was prepared by a conventional ceramic process followed by sintering at three different temperatures(1050°C,1100°C and 1150°C).X-ray diffraction(XRD)...Spinel ferrite Ni_(0.08)Mn_(0.90)Zn_(0.02)Fe_(2)O_(4)was prepared by a conventional ceramic process followed by sintering at three different temperatures(1050°C,1100°C and 1150°C).X-ray diffraction(XRD)investigations stated the single-phase cubic spinel structure and the FTIR spectra revealed two prominent bands within the wavenumber region from 600 cm^(−1)to 400 cm^(−1).Surface morphol-ogy showed highly crystalline grain development with sizes ranging from 0.27μm to 0.88μm.The magnetic hysteresis curve at ambient temperature revealed a significant effect of sintering temperature on both coercivity(Hc)and saturation magnetization(Ms).Temperature caused a decrease in DC electrical resistivity,while the electron transport increased,suggesting the semicon-ducting nature of all samples and that they well followed the Arrhenius law from which their activation energies were determined.The values of Curie temperature(Tc)and activation energy were influenced by the sintering temperature.Frequency-dependent dielectric behavior(100 Hz-1 MHz)was also analyzed,which may be interpreted by the Maxwell-Wagner-type polarization.The UV-vis-NIR reflectance curve was analyzed to calculate the bandgap of ferrites,which showed a decreasing trend with increasing sintering temperature.展开更多
基金supported by the National Natural Science Foundation of China (No. 51509211)the China Postdoctoral Science Foundation (No. 2016M602863)+5 种基金the Natural Science Foundation of Shaanxi Province (Nos. 2024JC-YBMS-354 and 2021JLM-51)the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province (No. 2018031)the Social Development Foundation of Shaanxi Province (No. 2015SF260)the Postdoctoral Science Foundation of Shaanxi Province (No. 2017BSHYDZZ50)Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University (No. SZ02306)Xi’an Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology (No. XKLGUEKF21-02)
文摘Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.
文摘As a fundamental component of an automobile engine’s timing chain drive system, the hydraulic automatic tensioner signifcantly enhances fuel economy while minimizing system vibrations and noise. However, there is a noticeable lack of research on automatic hydraulic tensioners. This study presents a comprehensive calculation approach for the principal parameters of a hydraulic automatic tensioner. An efective method, grounded in hydraulics and multibody dynamics, was introduced for estimating the dynamic response of such a tensioner. The simulation model developed for the hydraulic tensioner is characterized by its rapid dynamic response, consistent operation, and high accuracy. The dynamic behavior of the tensioner was analyzed under varying boundary conditions, using sinusoidal signal excitation. It was observed that the maximum damping force increases with a decreasing leakage gap. Conversely, an increase in oil temperature or air content leads to a decrease in the maximum damping force. The reaction forces derived from these calculations align well with experimental results. This calculation and simulation approach ofers considerable value for the design of innovative hydraulic tensioners. It not only streamlines the design phase, minimizes the number of trials, and reduces product costs, but also provides robust insights for evaluating the performance of hydraulic tensioners.
基金Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2008030)
文摘To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators.
基金the Science andTechnology Project of State Grid Corporation of China (No. 52094021N012).
文摘Threshold voltage (V_(TH)) hysteresis affects the dynamic characteristics of silicon carbide (SiC) MOSFETs, whichin turn affects reliability of a device. In this paper, a dynamichysteresis curve is proposed as an evaluation method of theinfluence of V_(TH) hysteresis on the switching characteristics ofSiC MOSFETs. This method can eliminate the impact of triggerlevel and obtain the dynamic V_(TH). Furthermore, the influence ofparasitic parameters on dynamic V_(TH) hysteresis is theoreticallyanalyzed. Double pulse tests under different parasitic parametersare performed on three SiC MOSFETs with different gatestructures to verify the analysis. Results show that gate resistance(R_(G)) and source inductance (L_(S)) have more significant effectson dynamic V_(TH) hysteresis compared with gate inductance anddrain inductance. V_(TH) hysteresis phenomenon weakens withincrease of R_(G) or L_(S), which is related to device structure.The results presented in this paper can provide guidance forthe design of circuit parasitic parameters of SiC MOSFETs toregulate V_(TH) hysteresis.
文摘By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and compensation behaviors) of the spin-l/2 hexagonal Ising nanowire (HIN) system with core/shell structure have been presented. The hysteresis curves are obtained for different values of the system parameters, in both ferromagnetic and antiferromagnetic cases. It has been shown that the system only undergoes a second-order phase transition. Moreover, from the thermal variations of the total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types.
基金supported by the National Natural Science Foundation of China(Grant No.61204006)the Fundamental Research Funds for the Central Universities,China(Grant No.K50511250002)the National Key Science and Technology Special Project,China(Grant No.2008ZX01002-002)
文摘In this paper, the effect of alumina thickness on Al2O3/InP interface with post deposition annealing (PDA) in the oxygen ambient is studied. Atomic layer deposited (ALD) Al2O3 films with four different thickness values (5 nm, 7 nm, 9 nm, 11 rim) are deposited on InP substrates. The capacitance-voltage (C-V) measurement shows a negative correlation between the alumina thickness and the frequency dispersion. The X-ray photoelectronspectroscopy (XPS) data present significant growth of indium-phosphorus oxide near the Al2O3/InP interface, which indicates serious oxidation of InP during the oxygen annealing. The hysteresis curve shows an optimum thickness of 7 nm after PDA in an oxygen ambient at 500 ℃ for 10 min. It is demonstrated that both sides of the interface are impacted by oxygen during post deposition annealing. It is suggested that the final state of the interface is of reduced positively charged defects on Al2O3 side and oxidized InP, which degrades the interface.
文摘This paper presents a study of the relationship between the magnetic properties and microstructure of nanocomposite Ni/MnO, Ni/CoO, Co/MnO, Co/CoO. The objective is to understand how the coupling interface FM/AFM (ferromagnetic/anti-ferromagnetic) manifests itself in magnetic response of these materials to an applied field. Sample preparation was performed using mechanochemical synthesis by means of a ball mill planetary type high power at normal atmosphere. The characterization was done by XRD (X-ray diffraction), SEM (scanning electron microscopy) and VSM (vibrating sample magnetometry). Analyzing the XRD peaks of the samples studied, there was a decrease in the average particle diameter with increasing milling time, which is important in the magnetic interactions of the atoms of the surface. In addition, the diffraction pattern showed formation of new phases by oxidation interfering with the magnetic measurements. Analyses by SEM show chipboard multiform nano- and micrometer-sized grains on the surface of the clusters being responsible for the interaction. The magnetic measurements show a strong coupling between the phases present in nanocomposites showing once again that the MS (mechanosynthesis) is a powerful technique for this kind of purpose. The effect of the decrease in crystallite size leads to large variations of magnetic properties of the material which have been specifically observed changes in HC (coercive field) in the RM (remanent magnetization) and SM (saturation magnetization). The decrease in crystallite size in the course of grinding intensifies the effects that depend on the surface-to-volume ratio of the material. M vs. T measures were taken for different values of applied field and found a jump in the moment of the sample near the N6el temperature of the antiferromagnetic.
文摘This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.
基金Acknowledgements The authors wish to kindly acknowledge Kwanghua Foundation from Tongji University, the Warwick China Partnership Fund from the University of Warwick, Engineering Physical Sciences Research Council (EP/I020489/1) for their support toward the third author as a visiting scholar at Tongji University, The support from the National Natural Science Foundation of China (Grant No. 51038008) is also greatly appreciated.
文摘This paper presents a constitutive model based on Ramberg-Osgood equation to describe the hysteresis material behavior of structural carbon steel with nominal yield strength between 235 to 420 N/mm^2. The proposed model was calibrated against a series of cyclic material tests with strain amplitude varying from 0.5% to 2.0%. A simple relationship between the modular parameter K and the yield strengthfy was proposed. The calibrated Ramberg-Osgood model revealed excellent agreement with the experimental results and captured further the experimental behavior of test specimens with nominal yield strength of 460 N/mm^2. The proposed constitutive model was also adopted in conjunction with the combined kinematic/isotropic materials description in ABAQUS to mimic a full scale experimental test under cyclic loading. The numerical results revealed close agreement with the experimental observations.
基金the National Natural Science Foundation of China (No. 50708059)the Graduate Student Research and Innovation Program of Shanghai Jiaotong University (No. TS0220701001)
文摘Bond behavior of corroded reinforcement in concrete wrapped with carbon fiber reinforced polymer (CFRP) under cyclic loading is experimentally investigated. An electrolyte corrosion technique is used to accelerate the corrosion of the steel bar in cylindrical concrete specimens. Wrapped specimens are strengthened with one layer of CFRP after the reinforcements are corroded. The experimental parameters investigated include: corrosion level, CFRP wrapped and number of loading cycles. Test results indicate that bond strength and area of hysteretic curve of CFRP wrapped specimens are larger than those of the unwrapped specimens. With increasing the number of loading cycles, the bond strength and area of hysteretic curve decrease gradually, especially at the 1st cyclic loading. The CFRP wrapping reduces the bond degradation rate effectively and prevents the bond-splitting failure of the corroded concrete specimens.
文摘Spinel ferrite Ni_(0.08)Mn_(0.90)Zn_(0.02)Fe_(2)O_(4)was prepared by a conventional ceramic process followed by sintering at three different temperatures(1050°C,1100°C and 1150°C).X-ray diffraction(XRD)investigations stated the single-phase cubic spinel structure and the FTIR spectra revealed two prominent bands within the wavenumber region from 600 cm^(−1)to 400 cm^(−1).Surface morphol-ogy showed highly crystalline grain development with sizes ranging from 0.27μm to 0.88μm.The magnetic hysteresis curve at ambient temperature revealed a significant effect of sintering temperature on both coercivity(Hc)and saturation magnetization(Ms).Temperature caused a decrease in DC electrical resistivity,while the electron transport increased,suggesting the semicon-ducting nature of all samples and that they well followed the Arrhenius law from which their activation energies were determined.The values of Curie temperature(Tc)and activation energy were influenced by the sintering temperature.Frequency-dependent dielectric behavior(100 Hz-1 MHz)was also analyzed,which may be interpreted by the Maxwell-Wagner-type polarization.The UV-vis-NIR reflectance curve was analyzed to calculate the bandgap of ferrites,which showed a decreasing trend with increasing sintering temperature.